The gastrointestinal epithelium functions as a dynamic barrier that serves as an interface between luminal contents and underlying tissue compartments, and is thus vital in maintaining mucosal homeostasis. Mucosal wounds have been observed following enteric infection, inflammatory bowel disease and ischemic insults. Disruption of the critical epithelial barrier allows access of luminal contents to immunologically privileged compartments thereby contributing to disease pathogenesis. In response to injury, intestinal epithelial cells (IEC) migrate and proliferate to rapidly cover denuded surfaces and re-establish the epithelia barrier. After identifying N-formyl peptide receptors (FPR1 and FPR2) in the intestinal epithelium, our studies suggest that FPR1 ligands including endogenous lipid/proteins and exogenous microbiota control intestinal epithelial homeostasis and repair. Thus, the proposed studies will further explore mechanisms by which these FPR ligands control restitution of the mucosal barrier. The proposed studies will not only provide a better understanding of basic mechanisms by which FPRs regulate epithelial repair, but will also aid in the development of new therapeutic strategies aimed at promoting healing of the injured mucosa.

Public Health Relevance

The lining of the gastrointestinal tract plays an important role in immune defense, which can be significantly compromised by conditions such as inflammatory bowel diseases, ischemia, mechanical injury and surgical procedures. The grant application will address the role of formyl peptide receptor ligands that include endogenous ligands and microbiota in regulating healing of the intestinal mucosa after injury. Thus, these studies will no only provide a better understanding of basic function of these receptors, but will also facilitate the development of novel therapeutic strategies aimed at promoting mucosal wound repair.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK089763-08
Application #
9597898
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Greenwel, Patricia
Project Start
2015-12-01
Project End
2020-11-30
Budget Start
2018-12-01
Budget End
2019-11-30
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hinrichs, Benjamin H; Matthews, Jason D; Siuda, Dorothée et al. (2018) Serum Amyloid A1 Is an Epithelial Prorestitutive Factor. Am J Pathol 188:937-949
Quiros, Miguel; Nishio, Hikaru; Neumann, Philipp A et al. (2017) Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J Clin Invest 127:3510-3520
Cruz-Acuña, Ricardo; Quirós, Miguel; Farkas, Attila E et al. (2017) Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 19:1326-1335
Alam, Ashfaqul; Leoni, Giovanna; Quiros, Miguel et al. (2016) The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 1:15021
Sumagin, R; Brazil, J C; Nava, P et al. (2016) Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol 9:1151-62
Luissint, Anny-Claude; Parkos, Charles A; Nusrat, Asma (2016) Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 151:616-32
Kudelka, Matthew R; Hinrichs, Benjamin H; Darby, Trevor et al. (2016) Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc Natl Acad Sci U S A 113:14787-14792
Matthews, Jason D; Sumagin, Ronen; Hinrichs, Benjamin et al. (2016) Redox control of Cas phosphorylation requires Abl kinase in regulation of intestinal epithelial cell spreading and migration. Am J Physiol Gastrointest Liver Physiol 311:G458-65
Rahman, Khalidur; Desai, Chirayu; Iyer, Smita S et al. (2016) Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 151:733-746.e12
Leoni, Giovanna; Neumann, Philipp-Alexander; Kamaly, Nazila et al. (2015) Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 125:1215-27

Showing the most recent 10 out of 19 publications