The vascularization of engineered tissues is critical to the ultimate success of tissue engineering as an organ replacement therapy. The formation of new capillary vessels in vivo, or angiogenesis, also is linked to the pathogenesis of numerous diseases including cancer, and is regulated by local cues within the tissue microenvironment. The general goal of this RENEWAL proposal is to understand the mechanism by which local extracellular matrix (ECM) properties regulate capillary endothelial cell proliferation, gene expression, and capillary tube morphogenesis required in angiogenesis. The investigator has found that adhesion to ECM cooperates with growth factors to generate not only biochemical, but also mechanical signals that are important in driving capillary endothelial cell function. Studies from the past grant period demonstrated that ECM stiffness and composition could be used to regulate proliferation, gene expression, and capillary tube formation by modulating contractile tension generated by the actin cytoskeleton. In this proposal, the investigator proposes to further investigate the role of these mechanical and adhesive cues in regulating angiogenic behaviors.
Specific Aim 1 will be to investigate the role of ECM stiffness in regulating angiogenesis.
Specific Aim 2 will be to investigate the role of ECM peptide ligands in regulating angiogenesis.
Specific Aim 3 will be to investigate the role of spatial organization of the ECM in regulating angiogenesis. Together, these studies will define the mechanisms by which local structural and mechanical properties within ECM modulate endothelial cell function and capillary morphogenesis, and establish new strategies to promote angiogenesis in native ischemic tissues as well as in ex-vivo engineered tissues.

Public Health Relevance

The formation of new capillary vessels in vivo, or angiogenesis, is a rate limiting challenge in the development of engineered implants for organ replacement. Angiogenesis is also critical to many disease processes, including tumor growth and the establishment of atherosclerosis. This project is designed to develop a better understanding of how angiogenesis is regulated by local adhesive and mechanical cues, such that we may better design future approaches to control the growth of blood vessels in tissues.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
2R01EB000262-11A2
Application #
7985280
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Hunziker, Rosemarie
Project Start
2000-02-01
Project End
2014-06-30
Budget Start
2010-07-19
Budget End
2011-06-30
Support Year
11
Fiscal Year
2010
Total Cost
$355,233
Indirect Cost
Name
University of Pennsylvania
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Greco Song, H-H; Rumma, Rowza T; Ozaki, C Keith et al. (2018) Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 22:608
Song, H-H Greco; Rumma, Rowza T; Ozaki, C Keith et al. (2018) Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 22:340-354
Longchamp, Alban; Mirabella, Teodelinda; Arduini, Alessandro et al. (2018) Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell 173:117-129.e14
Polacheck, William J; Kutys, Matthew L; Yang, Jinling et al. (2017) A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552:258-262
Trappmann, Britta; Baker, Brendon M; Polacheck, William J et al. (2017) Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 8:371
Choi, Dongwon; Park, Eunkyung; Jung, Eunson et al. (2017) Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest 127:1225-1240
Stevens, Kelly R; Scull, Margaret A; Ramanan, Vyas et al. (2017) In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 9:
Mirabella, T; MacArthur, J W; Cheng, D et al. (2017) 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 1:
Nguyen, Duc-Huy T; Gao, Lin; Wong, Alec et al. (2017) Cdc42 regulates branching in angiogenic sprouting in vitro. Microcirculation 24:
Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica et al. (2017) Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function. Proc Natl Acad Sci U S A 114:8758-8763

Showing the most recent 10 out of 93 publications