We propose to develop shape memory polymer (SMP) interventional devices for treating stroke victims that currently have limited therapeutic alternatives (450,000/yr in the USA). The development and testing of two complementary devices is proposed: a foam for filling aneurysms and a mechanical clot extraction system. The foam will address a major cause of hemorrhagic strokes. The clot extraction system will address the current clinical need for an acute ischemic stroke treatment and is a second generation device based on the results from our initial funding period. The foundation of this proposal is the multidisciplinary team and the existing partnership that exists between the Medical Technology Program at LLNL and UC Davis Medical Center (UCD). The team is comprised of the four co-Pis: Duncan Maitland (LLNL), Thomas Wilson (LLNL), Judy Van de Water (UCD) and Jonathan Hartman (UCD). During our first four years of the initial BRP award we have demonstrated significant results that strengthen our original hypothesis that these relatively new materials will make possible novel and clinically feasible mechanical devices for treating/preventing stroke. Key developments during the first award period are the enabling cornerstones of the current proposal: novel SMP polyurethanes with improved thermomechanical, optical and biocompatibility properties;SMP foams;successful animal model and biocompatibility studies;multi-stage 3D fabrication techniques;and a large body of analytical, experimental and computational tools brought to bear on material properties and device-body interactions. At the end of a second five-year term of support we will be in a position to pursue commercial support for transferring the devices/technology to industry and, through this process, into the clinic.
Showing the most recent 10 out of 66 publications