The limitation of current prostheses is not the devices themselves but rather the lack of sufficient independent control sources. A system capable of reading intra muscular EMG signals would greatly increase the number control sources available for prosthesis control. Current state-of-the-art electric prosthetic hands are generally single DOF (opening/closing) devices often implemented with EMG control. Current prosthetic arms requiring multi-DOF control most often use sequential control. As currently implemented, sequential control is slow. We propose to develop a multichannel/multifunction prosthetic hand/arm controller system capable of receiving and processing signals from up to sixteen implanted bipolar differential electromyographic (EMG) electrodes. An external prosthesis controller will use fuzzy-logic to decipher user intent from telemetry sent over a transcutaneous magnetic link by the implanted electrodes. The same link will provide power for the implanted electrodes. . Northwestern University will develop the multifunctional prosthesis controller and perform the animal experiments necessary to demonstrate the implanted devices. . Rehabilitation Institute of Chicago will perform animal experiments and help with human subject experiments. . Illinois Institute of Technology will develop individually addressable integrated circuit EMG sensor packages. Each sensor will be housed in BION(r) hermetically sealed packages provided by the Alfred E. Mann Foundation. . Sigenics Corp. will develop the transcutaneous telemetry link, (or reader). A custom-designed application specific integrated circuit (ASIC) will """"""""strip"""""""" the data from the link's telemetry and send it to the prosthesis controller. Powering of the implanted electrodes will also be controlled by the ASIC. The external coil of the inductive link will be laminated into a prosthetic socket. Development of each component of the system will occur in parallel. Throughout years 1 & 2 fine wire studies with human subjects will be used to develop multifunctional prosthesis control algorithms. Initial silicon for the implanted electrodes and reader ASIC will be ready by end of year 1. Packaged electrodes ready for animal testing and a prototype reader will be ready the middle of year 2. Year 3 is expected to be spent going through initial system integration and iterative test-redesign cycles. A definitive design is anticipated to be ready for final testing and tweaking by the middle of year 4. The final year will be spent conducting the final systems integration.
Showing the most recent 10 out of 18 publications