The long-term goal of this research program continues: to evaluate myocardial function and physiology with high temporal and spatial resolution using advanced multidimensional ultrasound methods. The specific goals of this proposed project for the next five years are: 1) to relate localized in-plane wall stress, to the vibroacoustography signal in excised perfused slabs of myocardium and later, in open chest pigs, 2) to relate local myocardial in-plane strain, measured with tissue Doppler gradients from our intra-cardiac ultrasound catheter, to vibro-acoustography signals, 3) to measure myocardial perfusion (ml gram-1 min about') from contrast bubble concentration, with vibro-acoustography using high ultrasound intensity to clear out bubbles, and then 4) to apply these methods to characterizing localized myocardial conditions of normal, ischemia, infarct, and reperfusion, in the hearts of open chest pigs validated with gross vital staining and histology. These specific goals will be accomplished with two new imaging methods, both recently developed at Mayo Clinic. The first is an intracardiac ultrasound imaging catheter developed in collaboration between the Mayo echocardiography group and Acuson Corporation (AcuNav, Acuson, Inc., Mountain View, CA). The intracardiac catheter (ICE) can measure tissue myocardial Doppler velocity gradients, which are a rough estimate of strain rate along the direction of the ultrasound beam. The second recently developed imaging method is """"""""vibro-acoustographic emission"""""""" or VAE. VAE uses radiation force induced vibration of myocardium, detected with a hydrophone, to estimate stiffness with high spatial and temporal resolution (-0.7cc, 200 samples/second, respectively). In controlled in vitro and in vivo studies we will validate the ability of VAE to estimate wall stress from measurements of stiffness and of ICE to estimate strain. We also propose that VAE can assess inflow rates of contrast microbubbles, and thus provide an estimate of blood perfusion, within localized (-0.7cc) regions in the myocardium. When VAE, validated in this program, is combined with the ICE catheter in a future clinical instrument, highly localized stress, strain and perfusion could be estimated within the mvocardium.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
8R01EB002167-14
Application #
6645645
Study Section
Special Emphasis Panel (ZRG1-SSS-X (10))
Program Officer
Haller, John W
Project Start
1989-04-01
Project End
2006-08-31
Budget Start
2003-09-01
Budget End
2004-08-31
Support Year
14
Fiscal Year
2003
Total Cost
$354,957
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Nenadic, Ivan Z; Urban, Matthew W; Pislaru, Cristina et al. (2018) In Vivo Open- and Closed-chest Measurements of Left-Ventricular Myocardial Viscoelasticity using Lamb wave Dispersion Ultrasound Vibrometry (LDUV): A Feasibility Study. Biomed Phys Eng Express 4:
Nenadic, Ivan Z; Qiang, Bo; Urban, Matthew W et al. (2017) Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients. Phys Med Biol 62:484-500
Urban, Matthew W; Qiang, Bo; Song, Pengfei et al. (2016) Investigation of the effects of myocardial anisotropy for shear wave elastography using impulsive force and harmonic vibration. Phys Med Biol 61:365-82
Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo et al. (2015) Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation. J Acoust Soc Am 138:2499-507
Nabavizadeh, Alireza; Song, Pengfei; Chen, Shigao et al. (2015) Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams. IEEE Trans Ultrason Ferroelectr Freq Control 62:647-62
Song, Pengfei; Macdonald, Michael; Behler, Russell et al. (2015) Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE). IEEE Trans Ultrason Ferroelectr Freq Control 62:290-302
Dutta, Parikshit; Urban, Matthew W; Le MaƮtre, Olivier P et al. (2015) Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force. Phys Med Biol 60:5279-96
Warner, James E; Aquino, Wilkins; Grigoriu, Mircea D (2015) Stochastic reduced order models for inverse problems under uncertainty. Comput Methods Appl Mech Eng 285:488-514
Song, Pengfei; Urban, Matthew W; Manduca, Armando et al. (2015) Coded excitation plane wave imaging for shear wave motion detection. IEEE Trans Ultrason Ferroelectr Freq Control 62:1356-72
Warner, James E; Diaz, Manuel I; Aquino, Wilkins et al. (2014) Inverse Material Identification in Coupled Acoustic-Structure Interaction using a Modified Error in Constitutive Equation Functional. Comput Mech 54:645-659

Showing the most recent 10 out of 53 publications