The goal of this project is to translate RF encoding methods developed in an R21 project to human imaging, by implementing them on a very low ?eld human MRI scanner. Its successful completion will enable silent, low-cost and more portable MRI systems, leading to a substantial reduction in the cost of imaging and improved patient compliance and comfort. In conventional MRI, a received signal is localized to its spatial location of origin based on its temporal frequency, which is controlled using magnetic ?elds that are parallel to the main (B0) ?eld of the scanner and vary linearly across space. There are many problems with these B0 gradient ?elds: they are loud and induce peripheral nerve stimulation, compromising patient comfort; they have relatively long switching times due to the high inductance of the coils; they require bulky cooling systems and customized ampli?ers; and they are expen- sive, representing 25-30% of the cost of a clinical scanner. B0 gradient encoding also suffers from spatial errors due to concomitant terms, which increase with decreasing B0 ?eld strength and will limit the performance of emerging portable and low-cost MRI systems. A potential solution to these problems is to replace B0 gradients with RF gradients, which are silent and low-cost. Unfortunately, in spite of its potential RF gradient encoding has not yet become a clinical or commercial success. This is largely due to the fact that no existing RF gradient encoding method offers the orthogonality between contrast development and spatial encoding that is enjoyed by B0 gradients, or a straightforward path to convert existing B0 gradient-based MRI scans to use RF encoding. The methods developed in this project are the ?rst to meet these requirements, and will thus be the ?rst truly viable RF gradient-based imaging methods. The central innovation of this project is to use the Bloch-Siegert (BS) shift to spatially encode the MRI signal. As with B0 gradients, this encoding mechanism is based on the application of phase shifts to magnetization directly in the transverse plane, and therefore does not modulate the magnitude of the transverse magnetization, leaving image contrast unaffected by spatial encoding. The ?rst Aim of the project is to develop array and solenoid RF gradient coils and associated RF hardware to enable 2D and 3D Cartesian brain imaging on a human 0.0475 Tesla MRI scanner, including strategies for simultaneous RF transmission and reception to enable frequency encoding by BS shift.
The second Aim i s to develop and implement RF-encoded pulse sequences for brain imaging based on the BS shift, leveraging key developments from the R21 phase of the project including swept RF pulses for phase encoding, a theoretical basis and pulse sequence for BS frequency encoding, and RF pulses for RF gradient-based slice-selective excitation and slice-encoding.
The third Aim i s to develop image reconstructions and evaluate the encoding methods in human brain imaging. Successful completion of these Aims will establish the ?rst viable fully RF-encoded human imaging system and pave the way for commercialization and clinical use.

Public Health Relevance

The hardware currently used for spatial encoding in MRI causes signi?cant patient discomfort due to noise and peripheral nerve stimulation, and represents a large portion of the cost of a scanner. This project aims to address these problems through the translation of new spatial encoding strategies using radiofrequency ?elds to human MR imaging. The successful completion of this project has the potential to bring about a new generation of silent, more compact and lower-cost clinical MRI scanners.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB030414-01
Application #
10073002
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wang, Shumin
Project Start
2020-07-15
Project End
2024-03-31
Budget Start
2020-07-15
Budget End
2021-03-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
965717143
City
Nashville
State
TN
Country
United States
Zip Code
37203