Astrocytes are an important component of the neuropil and their dysfunction has been associated with a variety of idiopathic and genetic diseases including Alzheimer's and Parkinson's disease and in energy deprivation syndromes such as thiamine deficiency and antimetabolite poisoning. The prevailing model of healthy astrocyte-neuron interaction is one of continuous and intimate physical contact between adjacent membranes that promotes neuronal homeostasis. While the loss of astrocytes in the neuropil is generally viewed as a negative event, we propose here that in the acute phases of intoxication loss of astrocytes may protect neurons against further injury mediated by release of adenosine. Specifically, in this proposal we hypothesize that DNB-induced oxidative stress in astrocytes induces the release of adenosine which in turn activates A1 receptors in neurons via paracrine mechanisms and self-regulates A2 receptors on injured astrocytes. Since oxidative stress is the precipitating event, the corollary to this hypothesis is that in neurons, oxidative stress converges on PI3K/ERK to regulate the activity of BCL proteins that promote mitochondrial fusion and stabilization of the cell. Additional neuronal protection is achieved via A1-mediated activation of AKT with blockage of pro-death Bcl proteins and activation of survival Bcl-proteins. Conversely, in astrocytes, activation of the A2 receptor exacerbates loss of calcium control, swelling and cell death. This hypothesis for the role of astrocytes in the protection of neurons from oxidative stress-induced cell death will be tested by addressing the following specific questions.
AIM 1 : Can adenosine released by astrocytes silence neurons and protect them from the effects of exposure to 1,3-DNB? Aim 2: Does A1 receptor mediated signaling through PI3K, AKT and/or ERK block death- related members of the Bcl-family of proteins in neurons? Aim 3: Is the course of mitochondrial fusion or fission determined by or dependent upon binding of Mfn1/2, Bax/Bad/Bcl-XL and Drp 1? Aim 4: Does binding of proteins that alter mitochondrial morphology also alter membrane potential and function? Dinitrobenzene (DNB) provides and excellent model of energy deprivation syndromes with selective damage to astrocytes. This experimental approach will enable dissection of the role of BCL-proteins, mitofusins and Drp-1 in coordinating the loss of mitochondrial function and may provide new insights into neuronal/glial interactions that form the foundation for pathoclisis, or selective cellular susceptibility to environmental neurotoxicants.

Public Health Relevance

Astrocytes are supporting cells in the central nervous system. Data from our laboratories show that they are a primary target of many environmental chemicals that result in dysfunction of the central nervous system. As injury to the astrocyte progresses, ATP is converted to adenosine and is released into the extracellular space where it can interact with A1 receptors on neurons (protective) and A2 receptors on astrocytes (injurious). We propose here that in the acute phases of CNS injury, loss of neuronal function (silencing) is elicited by adenosine and may spare the neuron from the deleterious effects of oxidative stress and excitotoxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
3R01ES008846-10S1
Application #
8240666
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Lawler, Cindy P
Project Start
1999-06-01
Project End
2013-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
10
Fiscal Year
2011
Total Cost
$99,000
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Maurer, Laura L; Latham, Jackelyn D; Landis, Rory W et al. (2016) 1,3-Dinitrobenzene neurotoxicity - Passage effect in immortalized astrocytes. Neurotoxicology 53:74-84
Russ, K A; Elvati, P; Parsonage, T L et al. (2016) C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale 8:4134-44
Kubik, Laura L; Philbert, Martin A (2015) The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration. Toxicol Sci 144:7-16
Kubik, Laura L; Landis, Rory W; Remmer, Henriette et al. (2015) 1,3-dinitrobenzene induces age- and region-specific oxidation to mitochondria-related proteins in brain. Toxicol Sci 145:48-58
Dixon, Angela R; Philbert, Martin A (2015) Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro 29:564-74
Song, Dong Hoon; Park, Jonghyun; Philbert, Martin A et al. (2014) Effects of local pH on the formation and regulation of cristae morphologies. Phys Rev E Stat Nonlin Soft Matter Phys 90:022702
Steiner, Stephen R; Milton, Evan; Philbert, Martin A (2013) A comparative study of protein carbonylation and mitochondrial dysfunction using the neurotoxicants 1,3-dinitrobenzene, 3-nitropropionic acid, and 3-chloropropanediol. Neurotoxicology 37:74-84
Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L et al. (2013) Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria. Phys Rev E Stat Nonlin Soft Matter Phys 88:062723
Wang, Yipei; Liu, Xin; Schneider, Brandon et al. (2012) Mixed inhibition of adenosine deaminase activity by 1,3-dinitrobenzene: a model for understanding cell-selective neurotoxicity in chemically-induced energy deprivation syndromes in brain. Toxicol Sci 125:509-21
Nie, Guochao; Hah, Hoe Jin; Kim, Gwangseong et al. (2012) Hydrogel nanoparticles with covalently linked coomassie blue for brain tumor delineation visible to the surgeon. Small 8:884-91

Showing the most recent 10 out of 26 publications