Manganese (Mn) is a potent neurotoxin. We hypothesize that PARK2, a strong Parkinson's disease (PD) genetic risk factor, alters neuronal vulnerability to modifiers of cellular Mn status, particularly at the level of mitochondrial dysfunction and oxidative stress. The long-term goal of this research is to elucidate the basis of Mn-induced neurotoxicity and to identify mechanistic-based neuroprotective strategies to mitigate human Mn exposure risk. Our approach will utilize a novel high-throughput assay of intracellular Mn levels to identify small molecule modifiers of cellular Mn status and neurotoxicity. Genetic modifiers of Mn transport and toxicity will be defined and translational studies of existing and newly identified genetic and small molecule modifiers of Mn toxicity will be performed utilizing a primary human neuronal model system based upon human induced pluripotent stem cell (hiPSC) technology.
Aim 1 will identify lead compounds that alter neuronal Mn transport and toxicity in vitro using striatal and mesencephalic murine neuronal cell lines and in vivo using C. elegans.
Aim 2 will delineate functional pathways that regulate Mn transport and toxicity in vivo and in vitro.
Specific Aim 3 will test the hypothesis that human neuronal models of PD exhibit increased sensitivity to perturbations of cellular Mn status.
These specific aims hold the promise of delineating common initiator signals for the modulation of Mn neurotoxicity, shedding light on mechanisms and susceptibility associated with exposure to this metal. This dual-PI proposal is bolstered by its use of innovative state-of-the-art complimentary approaches in diverse model systems.

Public Health Relevance

The proposed studies will (1) provide novel and innovative information on functional and hierarchal relationships between small molecule modifiers of cellular manganese (Mn) status and Mn neurotoxicity, (2) identify novel therapeutic modalities for Mn-induced neurotoxicity, and (3) delineate gene-environment interactions within and across species in the integrated systems response to Mn. Our multidisciplinary approach seeks to define the functional domains that regulate key nodes of interaction between Mn and biological systems and the role genetic traits of susceptibility play in mediating molecular mechanisms of neurological disease influence by Mn exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
7R01ES010563-13
Application #
8573592
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Kirshner, Annette G
Project Start
2000-07-01
Project End
2017-10-31
Budget Start
2013-11-01
Budget End
2014-10-31
Support Year
13
Fiscal Year
2014
Total Cost
$551,069
Indirect Cost
$126,705
Name
Albert Einstein College of Medicine
Department
Pharmacology
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Peres, Tanara V; Arantes, Leticia P; Miah, Mahfuzur R et al. (2018) Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity. Neurotox Res :
Chiou, Brian; Neal, Emma H; Bowman, Aaron B et al. (2018) Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One 13:e0198775
Pajarillo, Edward; Johnson Jr, James; Kim, Judong et al. (2018) 17?-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65:280-288
Meng, Qingtao; Wu, Shenshen; Wang, Yajie et al. (2018) MPO Promoter Polymorphism rs2333227 Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-2?. Cancer Res 78:2760-2769
Karki, Pratap; Hong, Peter; Johnson Jr, James et al. (2018) Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-?B Pathways. Mol Neurobiol 55:5031-5046
Ke, Tao; Gonçalves, Filipe Marques; Gonçalves, Cinara Ludvig et al. (2018) Post-translational modifications in MeHg-induced neurotoxicity. Biochim Biophys Acta Mol Basis Dis :
Rohn, Isabelle; Marschall, Talke Anu; Kroepfl, Nina et al. (2018) Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans. Metallomics 10:818-827
Johnson Jr, James; Pajarillo, Edward Alain B; Taka, Equar et al. (2018) Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 64:230-239
Casjens, Swaantje; Dydak, Urike; Dharmadhikari, Shalmali et al. (2018) Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study. Neurotoxicology 64:60-67
Pinkas, Adi; Cunha Martins Jr, Airton; Aschner, Michael (2018) C. elegans-An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. Int J Environ Res Public Health 15:

Showing the most recent 10 out of 199 publications