Environmental exposures to toxic compounds rarely result from the action of single toxicants. Often, the toxic agent is a complex mixture of chemical entities in numbers ranging from a few, such as in occupational exposures, to several thousand, as in cigarette smoke. The long-range goal of the research supported by this grant is to develop an understanding of the mechanisms responsible for the adverse health effects of exposure to mixtures of chromium (VI) and benzo[a]pyrene (BaP), focusing on the mechanisms causing gene expression deregulation. We have shown that high-dose acute chromium treatment activates MAP kinases, interferes with the assembly of transcriptional complexes, cross-links HDAC1?DNMT1 complexes to promoter chromatin and inhibits epigenetic phosphorylation, acetylation and methylation marks established by Cr/BaP-induced gene transactivation in histones H3 and H4. These changes inhibit recruitment of RNA polymerase II to target promoters, and block inducible gene expression, increasing genomic instability, DNA damage and apoptosis while decreasing clonogenic ability. We used three different analytical approaches, namely FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements), DANPOS (Dynamic Analysis of Nucleosome Positioning and Occupancy by Sequencing), and ATAC (Assay for Transposase-Accessible Chromatin), to test whether chromium could cause epigenetic changes in chromatin organization and architecture that could explain this diversity of phenotypic effects. With high statistical significance, all three tests showed that chromium causes chromatin domains surrounding the binding sites for CTCF (CCCTC binding factor) and its analog, BORIS (Brother of the Regulator of Imprinted Sites) to switch from states of closed to open chromatin or the reverse. CTCF/BORIS binding sites are the sole determinants of chromosome boundary-insulation in the mammalian genome, playing a critical role in transcriptional regulation. In addition, CTCF is also uniquely responsible for establishing chromatin topological domains and maintaining the 3-dimensional structure of the genome. Our novel findings lead us to the hypothesis that Cr(VI) breaks the links created by CTCF connecting genome architecture and function. Specifically, we propose that Cr(VI) disrupts 3-dimensional chromatin organization and boundary formation between topologically associated domains in chromosomes, destroying the interactions between transcription regulatory sequences. Based on these findings, we propose to test this hypothesis by determining whether Cr(VI) treatment disrupts the long-range genome-wide intrachromosomal and interchromosomal interactions established by CTCF and whether it interferes with the insulator function of CTCF and disrupts transcriptional regulation in CTCF-bound domains. The knowledge derived from the research proposed here will have a major impact on the biological and medical translation of epidemiological findings of chromium exposure and, by identifying molecular targets useful to reduce disease incidence, will significantly contribute to the development of therapeutic and preventative measures.

Public Health Relevance

Environmental exposure to hexavalent chromium in drinking water and cigarette smoking and occupational exposure in the workplace are often compounded with concomitant exposures to aromatic hydrocarbon procarcinogens, resulting in health problems including lung, stomach and intestinal tract tumors. The objective of this grant proposal is to evaluate how hexavalent chromium disrupts the architecture of the genome and causes genotoxicity and carcinogenicity by deregulating gene expression. The knowledge derived from this research will identify molecular targets to reduce disease incidence and will significantly contribute to the development of therapeutic and preventative measures with major impact on the treatment of the diseases caused by these agents.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Systemic Injury by Environmental Exposure (SIEE)
Program Officer
Tyson, Frederick L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Cincinnati
Public Health & Prev Medicine
Schools of Medicine
United States
Zip Code
VonHandorf, Andrew; Sánchez-Martín, Francisco Javier; Biesiada, Jacek et al. (2018) Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes. Epigenetics 13:363-375
Ko, Chia-I; Puga, Alvaro (2017) Does the Aryl Hydrocarbon Receptor Regulate Pluripotency? Curr Opin Toxicol 2:1-7
Wang, Qin; Kurita, Hisaka; Carreira, Vinicius et al. (2016) Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions. Toxicol Sci 149:346-57
Ko, Chia-I; Fan, Yunxia; de Gannes, Matthew et al. (2016) Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells 34:2825-2839
Carreira, Vinicius S; Fan, Yunxia; Wang, Qing et al. (2015) Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes. Toxicol Sci 147:425-35
Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka et al. (2015) Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult. PLoS One 10:e0142440
Sánchez-Martín, Francisco Javier; Lindquist, Diana M; Landero-Figueroa, Julio et al. (2015) Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology 46:92-100
Sánchez-Martín, Francisco Javier; Fan, Yunxia; Carreira, Vinicius et al. (2015) Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice. Toxicol Sci 146:52-64
Ovesen, Jerald L; Fan, Yunxia; Chen, Jing et al. (2014) Long-term exposure to low-concentrations of Cr(VI) induce DNA damage and disrupt the transcriptional response to benzo[a]pyrene. Toxicology 316:14-24
Ko, Chia-I; Wang, Qin; Fan, Yunxia et al. (2014) Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells. Stem Cell Res 12:296-308

Showing the most recent 10 out of 42 publications