Mast cells are an innate immune cell found in high abundance at mucosal surfaces that interface with the external environment where they play a major role as an immune sentinel to detect injury and insult. Sulfur mustard (SM), a bi-functional alkylating agent, has been used as a chemical warfare agent and exposure causes severe pulmonary, ocular and dermal toxicity. SM causes severe pulmonary damage upon inhalation including damage to airways, tissue remodeling, massive immune cell recruitment, edema, etc. Much of the toxicity to SM is attributed to its alkylating function and DNA damage, however, this does not explain the massive inflammatory response observed nor is it known how these inflammatory responses are elicited in the lung. We hypothesize that activation of mast cells by SM is an initiating step in recruitment and propagation of immune responses in the lung. To test this hypothesis, we will expose wild-type or mast cell deficient mice to nitrogen mustard (NM) (a surrogate for SM) to determine pulmonary responses including tissue damage, inflammation and development of fibrosis. In addition, we will utilize mouse bone marrow-derived mast cells to examine mechanisms by which NM leads to mast cell activation. Specifically, we will investigate whether NM causes mast cell degranulation, lipid mediator production and/or cytokine production. Overall, our goal is to establish a role for mast cells in regulating the pulmonary toxicity to NM thereby providing a novel therapeutic target for prevention and/or treatment of the effects of these chemical warfare agents. The preliminary data generated from this supplement will be used as the basis for a U01 application to the CounterAct program focused on therapeutically targeting mast cells in SM toxicity.

Public Health Relevance

Our preliminary data suggests a role for mast cells in the pulmonary toxicity to nitrogen mustard, an alkylating agent used for chemical warfare. In this supplement award, we will investigate the contribution of mast cells to pulmonary inflammation and tissue remodeling following exposure to nitrogen mustard using a mast cell deficient mouse model. In addition, we will examine mechanisms by which nitrogen mustard activates masts cell in vitro.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Systemic Injury by Environmental Exposure (SIEE)
Program Officer
Nadadur, Srikanth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Pharmacy
United States
Zip Code
Raghavendra, Achyut J; Gregory, Wren E; Slonecki, Tyler J et al. (2018) Three-photon imaging using defect-induced photoluminescence in biocompatible ZnO nanoparticles. Int J Nanomedicine 13:4283-4290
Persaud, Indushekhar; Shannahan, Jonathan H; Raghavendra, Achyut J et al. (2018) Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol Environ Saf 170:77-86
Alsaleh, Nasser B; Brown, Jared M (2018) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8-14
Drew, Nathan M; Kuempel, Eileen D; Pei, Ying et al. (2017) A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: Proof of concept evaluation. Regul Toxicol Pharmacol 89:253-267
Johnson, Monica M; Mendoza, Ryan; Raghavendra, Achyut J et al. (2017) Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 7:43570
Bai, Wei; Wu, Zheqiong; Mitra, Somenath et al. (2016) Effects of multiwalled carbon nanotube surface modification and purification on bovine serum albumin binding and biological responses. J Nanomater 2016:
Shannahan, Jonathan H; Fritz, Kristofer S; Raghavendra, Achyut J et al. (2016) From the Cover: Disease-Induced Disparities in Formation of the Nanoparticle-Biocorona and the Toxicological Consequences. Toxicol Sci 152:406-16
Alsaleh, Nasser B; Persaud, Indushekhar; Brown, Jared M (2016) Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor. PLoS One 11:e0167366
Shannahan, Jonathan H; Podila, Ramakrishna; Brown, Jared M (2015) A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int J Nanomedicine 10:6509-21
Aldossari, Abdullah A; Shannahan, Jonathan H; Podila, Ramakrishna et al. (2015) Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 29:195-203

Showing the most recent 10 out of 33 publications