The recovery of visual sensitivity during and following bright light (bleaching) exposure requires that the visual pigment within rods and cones be regenerated quickly and efficiently to terminate the persistent activation of the transduction cascade by the transient photoproducts of bleaching and opsin. Sensitivity recovery also requires that activated rhodopsin, which is normally phosphorylated and bound by arrestin following light activation, be dephosphorylated to return to the dark-adapted ground state. The reversal of these processes is slow, and their role in sensitivity recovery is poorly understood. Here we propose to use a multidisciplinary approach, including physiological and biochemical methods, on rod photoreceptors from transgenic mice to determine how rhodopsin dephosphorylation and opsin adaptation impact the overall process of dark adaptation. We will focus on elucidating the properties of two mechanisms. The first is rhodopsin dephosphorylation, a slow process that occurs normally as regenerated visual pigment is returned to its dark-adapted ground state. The second is to determine the role that free opsin plays in bleaching (opsin) adaptation. Photoreceptor sensitivity will be measured electrophysiologically (single cell and electroretinogram recordings), the rate and extent of pigment bleaching/ regeneration will be measured microspectrophotometrically, and rhodopsin phosphorylation will be measured biochemically by immunofluorescence of differentially phosphorylated rhodopsin (isoelectric focusing). There are three Specific Aims.
In Aim I we will determine the cellular mechanisms that regulate rhodopsin dephosphorylation in rod photoreceptors isolated from the retinal pigment epithelium, and following exposure to bright light. These experiments will be based on our recent observation that the rate of rhodopsin dephosphorylation is regulated in mouse rods by the oxygen and lactate content in the medium bathing the retina. We will determine the relation of lactate and O2 to dephosphorylation, and whether they work singly or in concert. We will then determine whether lactate and O2 work through controlling the NAD/NADP ratio in rods, whether they act through Mller cells, or whether their effects are mediated through monocarboxylate transporters. Experiments in Aim II will determine the dependence of the rate of recovery and/or the extent of dark adaptation on lactate and O2. Experiments in Aim III will establish the phosphorylation state of free opsin responsible for bleaching adaptation, and we will determine the extent to which phosphorylated and unphosphorylated opsin activate transducin. Results of these studies will provide a molecular understanding of those mechanisms of dark adaptation that are related to rhodopsin dephosphorylation and opsin adaptation to provide insights into effective therapies for the treatment of blinding eye diseases.

Public Health Relevance

The regeneration and dephosphorylation of rhodopsin are absolute requirements for maintenance of sensitivity in the mammalian retina, but the relationship between these mechanisms and sensitivity regulation is poorly understood. A molecular appreciation of these relationships is critically important, as impaired visual pigment regeneration and the resulting slowing of dark adaptation are the basis of a number of blinding eye diseases. The experiments in this proposal are designed to elucidate the cellular basis and relationship of these processes in wild-type and transgenic mice, with a long term goal to understand photoreceptor function under normal and disease related conditions.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY001157-46
Application #
9954080
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Neuhold, Lisa
Project Start
1977-04-01
Project End
2021-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
46
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Boston University
Department
Physiology
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Sato, Shinya; Frederiksen, Rikard; Cornwall, M Carter et al. (2017) The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones. Vis Neurosci 34:E004
Yue, Wendy Wing Sze; Frederiksen, Rikard; Ren, Xiaozhi et al. (2017) Spontaneous activation of visual pigments in relation to openness/closedness of chromophore-binding pocket. Elife 6:
Frederiksen, Rikard; Nymark, Soile; Kolesnikov, Alexander V et al. (2016) Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. J Gen Physiol 148:1-11
Berry, Justin; Frederiksen, Rikard; Yao, Yun et al. (2016) Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods. J Neurosci 36:6973-87
Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard et al. (2016) Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds. Elife 5:
Wilby, David; Toomey, Matthew B; Olsson, Peter et al. (2015) Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). J R Soc Interface 12:20150591
Toomey, Matthew B; Collins, Aaron M; Frederiksen, Rikard et al. (2015) A complex carotenoid palette tunes avian colour vision. J R Soc Interface 12:20150563
Wang, Jin-shan; Nymark, Soile; Frederiksen, Rikard et al. (2014) Chromophore supply rate-limits mammalian photoreceptor dark adaptation. J Neurosci 34:11212-21
Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin et al. (2012) Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol 139:493-505
Nymark, S; Frederiksen, R; Woodruff, M L et al. (2012) Bleaching of mouse rods: microspectrophotometry and suction-electrode recording. J Physiol 590:2353-64

Showing the most recent 10 out of 51 publications