The main objective of this proposal is to continue the study of models of the normal and abnormal visual system. We will use psychophysical and electrophysiological techniques to aid in identifying sites of adaptation and retinal disease. An approach for comparing the psychophysical and electrophysiological data will be developed, and the data will be analyzed within the context of models of the rod and cone systems. These models will be computational models that are explicit in time. They will be used to test hypotheses about sites and mechanisms of disease related sensitivity loss in diabetes and retinitis pigmentosa. We also plan to pursue our interest in S-cone pathway vulnerability. A prospective study will be designed to evaluate whether a measure of S-cone sensitivity can predict the progression of diabetic retinopathy. In addition, using a color monitor, we will develop psychophysical paradigms to test hypotheses about sites and mechanisms of foveal color vision defects found in patients with open-angle glaucoma. The data will be analyzed within the context of recent models of cone systems, models based on recent physiology.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY002115-18
Application #
2158346
Study Section
Visual Sciences B Study Section (VISB)
Project Start
1977-08-01
Project End
1996-07-31
Budget Start
1994-08-01
Budget End
1995-07-31
Support Year
18
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Psychology
Type
Other Domestic Higher Education
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10027
Hood, Donald C; De Moraes, Carlos Gustavo (2018) Challenges to the Common Clinical Paradigm for Diagnosis of Glaucomatous Damage With OCT and Visual Fields. Invest Ophthalmol Vis Sci 59:788-791
Wu, Zhichao; Weng, Denis S D; Rajshekhar, Rashmi et al. (2018) Effectiveness of a Qualitative Approach Toward Evaluating OCT Imaging for Detecting Glaucomatous Damage. Transl Vis Sci Technol 7:7
De Moraes, Carlos Gustavo; Muhammad, Hassan; Kaur, Khushmit et al. (2018) Interindividual Variations in Foveal Anatomy and Artifacts Seen on Inner Retinal Probability Maps from Spectral Domain OCT Scans of the Macula. Transl Vis Sci Technol 7:4
Mavrommatis, Maria A; Wu, Zhichao; Naegele, Saskia I et al. (2018) Deep Defects Seen on Visual Fields Spatially Correspond Well to Loss of Retinal Nerve Fiber Layer Seen on Circumpapillary OCT Scans. Invest Ophthalmol Vis Sci 59:621-628
Hood, Donald C; De Moraes, Carlos G (2018) Four Questions for Every Clinician Diagnosing and Monitoring Glaucoma. J Glaucoma 27:657-664
Wu, Zhichao; Weng, Denis S D; Thenappan, Abinaya et al. (2018) Comparison of Widefield and Circumpapillary Circle Scans for Detecting Glaucomatous Neuroretinal Thinning on Optical Coherence Tomography. Transl Vis Sci Technol 7:11
Muhammad, Hassan; Fuchs, Thomas J; De Cuir, Nicole et al. (2017) Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects. J Glaucoma 26:1086-1094
Prager, Alisa J; Hood, Donald C; Liebmann, Jeffrey M et al. (2017) Association of Glaucoma-Related, Optical Coherence Tomography-Measured Macular Damage With Vision-Related Quality of Life. JAMA Ophthalmol 135:783-788
Thenappan, Abinaya; De Moraes, Carlos Gustavo; Wang, Diane L et al. (2017) Optical Coherence Tomography and Glaucoma Progression: A Comparison of a Region of Interest Approach to Average Retinal Nerve Fiber Layer Thickness. J Glaucoma 26:473-477
Hood, Donald C (2017) Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 57:46-75

Showing the most recent 10 out of 162 publications