Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY003624-16
Application #
2158882
Study Section
Visual Sciences C Study Section (VISC)
Project Start
1980-12-01
Project End
1997-06-30
Budget Start
1996-07-01
Budget End
1997-06-30
Support Year
16
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Harvard University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Mondal, M S; Ruiz, A; Hu, J et al. (2001) Two histidine residues are essential for catalysis by lecithin retinol acyl transferase. FEBS Lett 489:14-8
Mondal, M S; Ruiz, A; Bok, D et al. (2000) Lecithin retinol acyltransferase contains cysteine residues essential for catalysis. Biochemistry 39:5215-20
Parish, C A; Rando, R R (2000) Isoprenylation/methylation and transducin function. Methods Enzymol 316:451-64
Tok, J B; Cho, J; Rando, R R (1999) Aminoglycoside antibiotics are able to specifically bind the 5'-untranslated region of thymidylate synthase messenger RNA. Biochemistry 38:199-206
Hamasaki, K; Killian, J; Cho, J et al. (1998) Minimal RNA constructs that specifically bind aminoglycoside antibiotics with high affinities. Biochemistry 37:656-63
Perez-Sala, D; Gilbert, B A; Rando, R R et al. (1998) Analogs of farnesylcysteine induce apoptosis in HL-60 cells. FEBS Lett 426:319-24
Cho, J; Hamasaki, K; Rando, R R (1998) The binding site of a specific aminoglycoside binding RNA molecule. Biochemistry 37:4985-92
Hamasaki, K; Rando, R R (1998) A high-throughput fluorescence screen to monitor the specific binding of antagonists to RNA targets. Anal Biochem 261:183-90
Wang, Y; Hamasaki, K; Rando, R R (1997) Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region. Biochemistry 36:768-79
Hamasaki, K; Rando, R R (1997) Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry 36:12323-8

Showing the most recent 10 out of 48 publications