Our broad goal is to develop a four stage computational model of spatial vision, based on plausible physiological mechanisms, that predict the performance of normal foveal and peripheral vision, as well as the visual deficits associated with amblyopia. There is a great diversity of masking effects not handled by present models. One limitation of most current models is that they overlook retinal front-end effects and second order effects, such as texture processing. Another major limitation of current models is their reliance on fixed cortical spatial filters, followed by a primitive decision stage. Rather than inventing exotic spatial filters to account for unexplainable data, we suggest that a more parsimonious explanation, based on decision stage limits, can account for much of the data. The six aims of the proposal are organized into three categories: Modelfest: To enhance cross-fertilization among vision modelers, we have organized the Modelfest group. Modelfest is a new approach to modeling that involves the sharing of resources, learning from each other's success and providing a method to cross validate proposed models. Modelfest also facilitates interactions between vision science and medical imaging researchers, two groups with very different approaches to modeling. This interaction has already benefited us on decision stage issues. Our goal is to continue organizing, administering and promoting the group so that progress on vision modeling accelerates (Aim 1). Four-stage model: Current general purpose vision models virtually ignore several important stages of visual processing. We have developed several innovative methods to characterize processing at four stages, from early retinal processes to late decision stage variables. The proposed experiments will be used to define the computational model structure and to set the parameters at each stage.
(Aims 2 -5) Amblyopia and peripheral vision: Many of the stimuli used to develop the four stage model will also be used to test amblyopes and peripheral vision to determine the stages at which the peripheral and amblyopic visual systems differ from normal foveal vision. Wile past work has focused on early stage differences, there are now indications that some of the losses are taking place at later stages where information is integrated. The experimental results will be used to extend our model of spatial vision so that it predicts the visual losses associated with amblyopic and peripheral vision.
(Aim 6)

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY004776-16
Application #
6518321
Study Section
Special Emphasis Panel (ZRG1-VISB (04))
Program Officer
Oberdorfer, Michael
Project Start
1987-07-01
Project End
2004-03-31
Budget Start
2002-08-01
Budget End
2004-03-31
Support Year
16
Fiscal Year
2002
Total Cost
$263,200
Indirect Cost
Name
University of California Berkeley
Department
Type
Schools of Optometry/Ophthalmol
DUNS #
094878337
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Wang, Rui; Zhang, Jun-Yun; Klein, Stanley A et al. (2014) Vernier perceptual learning transfers to completely untrained retinal locations after double training: a ""piggybacking"" effect. J Vis 14:12
Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A et al. (2014) Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation. Invest Ophthalmol Vis Sci 55:2020-30
Ding, Jian; Klein, Stanley A; Levi, Dennis M (2013) Binocular combination in abnormal binocular vision. J Vis 13:14
Ding, Jian; Klein, Stanley A; Levi, Dennis M (2013) Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model. J Vis 13:13
Pack, Weston; Carney, Thom; Klein, Stanley A (2013) Involuntary attention enhances identification accuracy for unmasked low contrast letters using non-predictive peripheral cues. Vision Res 89:79-89
Dandekar, Sangita; Privitera, Claudio; Carney, Thom et al. (2012) Neural saccadic response estimation during natural viewing. J Neurophysiol 107:1776-90
Dandekar, Sangita; Ding, Jian; Privitera, Claudio et al. (2012) The fixation and saccade P3. PLoS One 7:e48761
Wang, Rui; Zhang, Jun-Yun; Klein, Stanley A et al. (2012) Task relevancy and demand modulate double-training enabled transfer of perceptual learning. Vision Res 61:33-8
Levi, Dennis M; Carney, Thom (2011) The effect of flankers on three tasks in central, peripheral, and amblyopic vision. J Vis 11:10
Levi, Dennis M; Carney, Thom (2009) Crowding in peripheral vision: why bigger is better. Curr Biol 19:1988-93

Showing the most recent 10 out of 82 publications