Retinal degeneration is triggered by mutations in a large number of photoreceptor-expressed genes. Given the diversity of biochemical roles of these genes, each mutant must have distinct primary effects on photoreceptor cell biology. It is remarkable that the diversity of genetic insults result in retinal degeneration via similar morphological landmarks, suggesting the possibility of shared cell death events. During the previous granting cycle, an unbiased approach was successfully employed to identify genes that act in these retinal degeneration processes. Among experimental animals used in vision research, this type of approach is feasible only in Drosophila. Significantly, the approach has implicated non-caspase dependent pathways of cell death as the critical component in the progression of retinal disease. The three aims of this proposal focus on the analysis of identified molecular components of these pathways. Their role in the degeneration process will be studied by a combination of genetic, cell biological and molecular approaches. The effort is expected to provide new information on the cellular mechanisms controlling retinal degeneration. Thus, the proposal addresses one of the major goals of the National Plan released by the National Eye Institute in 2004. This five year plan includes, in the category of retinal disease, to """"""""identify the genes involved in both inherited and retinal degenerative diseases and determine the pathophysiological mechanisms underlying the disease progression triggered by these mutations."""""""" ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY006808-18A2
Application #
7095452
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Chin, Hemin R
Project Start
1987-07-01
Project End
2011-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
18
Fiscal Year
2006
Total Cost
$337,500
Indirect Cost
Name
University of Notre Dame
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
824910376
City
Notre Dame
State
IN
Country
United States
Zip Code
46556
Rocha, Manuel; Kimler, Kyle J; Leming, Matthew T et al. (2015) Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes. J Exp Biol 218:1386-92
Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A et al. (2014) Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. J Exp Biol 217:1003-8
Moon, Young Min; Metoxen, Alexander J; Leming, Matthew T et al. (2014) Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes. J Insect Physiol 70:88-93
Hu, Xiaobang; Leming, Matthew T; Metoxen, Alexander J et al. (2012) Light-mediated control of rhodopsin movement in mosquito photoreceptors. J Neurosci 32:13661-7
Hibbard, Karen L; O'Tousa, Joseph E (2012) A role for the cytoplasmic DEAD box helicase Dbp21E2 in rhodopsin maturation and photoreceptor viability. J Neurogenet 26:177-88
Hu, Xiaobang; Whaley, Michelle A; Stein, Michelle M et al. (2011) Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors. PLoS One 6:e23121
Mecklenburg, Kirk L; Takemori, Nobuaki; Komori, Naoka et al. (2010) Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila. J Neurosci 30:1238-49
Hu, Xiaobang; England, James H; Lani, Aaron C et al. (2009) Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: Implications for species-specific behavior. J Comp Neurol 516:334-42