New developments in neonatal technology have resulted in the survival of smaller infants who have limited retinal vascular development at birth and, thus, greater susceptibility to retinopathy of prematurity (ROP). It is reasoned that as more and smaller premature babies survive, the incidence of visual loss from ROP will continue to increase unless effective treatments are found. Advanced ROP is characterized by a period of unregulated growth of retinal blood vessels. This growth occurs by a process known as angiogenesis, indicating that the new vessels form by an abnormal sprouting of exiting vessels. The loss of vision from angiogenesis is not unique to ROP; collectively, ocular disorders with this feature constitute the leading cause of blindness in the U.S. The significance of research aimed at understanding retinal angiogenesis in an animal model of one of these diseases is amplified by the potential of applying the new knowledge to other ocular conditions in which angiogenesis plays a role. The ultimate goal of this project is to develop methods to prevent retinal angiogenesis based upon understanding gained from studies of relevant models. We propose to use pure cultures of retinal microvascular endothelial cells (RMEC), a well- established rat model of ROP and a mouse model of ROP currently under refinement. With these tools, we will address the following four interrelated aims: 1) investigation of the role of a pivotal tyrosine kinase, Src, in RMEC proliferation and tube formation and in ROP-related retinal angiogenesis; 2) characterization of the proteolytic aspect of ROP-related retinal angiogenesis, emphasizing PAI-1, MMP-2 and -9 and TIMP-2; 3) characterization of the roles of angiopoietins 1 and 2 in retinal vasculogenesis and angiogenesis; and identification of factors responsible for the angiostatic effect of penetrating ocular injury.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY007533-18
Application #
6765936
Study Section
Special Emphasis Panel (ZRG1-VISB (01))
Program Officer
Dudley, Peter A
Project Start
1988-04-01
Project End
2005-09-29
Budget Start
2004-07-01
Budget End
2005-09-29
Support Year
18
Fiscal Year
2004
Total Cost
$377,500
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Capozzi, Megan E; Giblin, Meredith J; Penn, John S (2018) Palmitic Acid Induces Müller Cell Inflammation that is Potentiated by Co-treatment with Glucose. Sci Rep 8:5459
Uddin, Md Imam; Jayagopal, Ashwath; Wong, Alexis et al. (2018) Real-time imaging of VCAM-1 mRNA in TNF-? activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. Nanomedicine 14:63-71
Xu, Lili; Ruan, Guoxiang; Dai, Heng et al. (2016) Mammalian retinal Müller cells have circadian clock function. Mol Vis 22:275-83
Capozzi, Megan E; McCollum, Gary W; Cousins, David B et al. (2016) Linoleic Acid is a Diabetes-relevant Stimulator of Retinal Inflammation in Human Retinal Muller Cells and Microvascular Endothelial Cells. J Diabetes Metab 7:
Capozzi, Megan E; Hammer, Sandra S; McCollum, Gary W et al. (2016) Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation. Sci Rep 6:39211
Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R et al. (2016) In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy. Sci Rep 6:31011
Suarez, Sandra; McCollum, Gary W; Jayagopal, Ashwath et al. (2015) High Glucose-induced Retinal Pericyte Apoptosis Depends on Association of GAPDH and Siah1. J Biol Chem 290:28311-20
Savage, Sara R; McCollum, Gary W; Yang, Rong et al. (2015) RNA-seq identifies a role for the PPAR?/? inverse agonist GSK0660 in the regulation of TNF?-induced cytokine signaling in retinal endothelial cells. Mol Vis 21:568-76
Savage, Sara R; Bretz, Colin A; Penn, John S (2015) RNA-Seq reveals a role for NFAT-signaling in human retinal microvascular endothelial cells treated with TNF?. PLoS One 10:e0116941
Barnett, Joshua M; Suarez, Sandra; McCollum, Gary W et al. (2014) Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization. Invest Ophthalmol Vis Sci 55:6490-8

Showing the most recent 10 out of 29 publications