Glaucoma remains a major blinding disease affecting over 66 million persons worldwide. This project has focused on the molecular mechanism(s) by which laser trabeculoplasty (LTP) ameliorates the elevated intraocular pressure (IOP) associated with most of primary open-angle glaucoma. Our studies indicate that extracellular matrix (ECM) turnover within the trabecular meshwork (TM), triggered by the cytokines TNF and IL-1 is a key component of the efficacy of LTP. Building on our recent results with this system, our focus now is to identify the molecular component(s) that comprise the aqueous humor outflow resistance and regulate IOP. Our working hypothesis is that the glycosaminoglycans (GAGs) on one or more specific proteoglycans within the juxtacanalicular region of the trabecular meshwork (TM) and Schlemm's canal inner wall endothelium form a critical component of the aqueous humor outflow resistance.
Aim 1 will be to identify which specific GAGs are changed coincident with several manipulations that change the outflow resistance in perfused anterior segment organ culture. These manipulations include GAG degrading enzymes, GAG biosynthesis inhibitors, TNF1, IL-11, TGF22 and increased IOP. Segmental differences in outflow rates within eyes will also be compared. Subtle differences between human and porcine outflow responses will be used to further refine the identification. Standard light and confocal microscopy using GAG stains, antibodies, binding proteins and lectins with enzymatic degradation will be used.
Aim 2 will be to identify the specific proteoglycan(s) that are the core proteins for the GAGs that provide the resistance. The same manipulations will be used with a combination of immunohistochemistry and biochemical methods to identify the core protein.
Aim 3 will be to verify the identification of the resistance-causing GAG/proteoglycan by alternative methods. The effects on outflow of silencing the key GAG biosynthetic enzyme and the proteoglycan core with shRNA and of perfusing expressed proteoglycan binding domains will be determined.
Aim 4 will be to use these binding domains to localize and identify binding partners and unravel the molecular and structural organization of the outflow resistance. Using these divergent approaches, we plan to determine, for the first time, the specific molecular identity of the GAG/proteoglycan(s) responsible for the aqueous humor outflow resistance and begin elucidating the structural organization of the resistance. Identifying the key molecular constituent of the outflow resistance should facilitate development of improved therapies for primary open-angle glaucoma.

Public Health Relevance

. Glaucoma remains the second leading cause of permanent vision loss in developed nations. The cause(s) of this disease are not well understood and therapies are directed at treating the symptoms. These studies are focused at understanding the molecular nature of the aqueous humor outflow pathway, which is normally responsible for avoiding glaucoma and which becomes obstructed to produce glaucoma.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY008247-23
Application #
8240496
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Chin, Hemin R
Project Start
1989-08-01
Project End
2013-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$620,631
Indirect Cost
$217,624
Name
Oregon Health and Science University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Vranka, Janice A; Staverosky, Julia A; Reddy, Ashok P et al. (2018) Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 59:246-259
Raghunathan, Vijay Krishna; Benoit, Julia; Kasetti, Ramesh et al. (2018) Glaucomatous cell derived matrices differentially modulate non-glaucomatous trabecular meshwork cellular behavior. Acta Biomater 71:444-459
Vranka, Janice A; Acott, Ted S (2017) Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork. Exp Eye Res 158:67-72
Dang, Yalong; Loewen, Ralitsa; Parikh, Hardik A et al. (2017) Gene transfer to the outflow tract. Exp Eye Res 158:73-84
Yang, Yong-Feng; Sun, Ying Ying; Acott, Ted S et al. (2016) Effects of induction and inhibition of matrix cross-linking on remodeling of the aqueous outflow resistance by ocular trabecular meshwork cells. Sci Rep 6:30505
Vranka, Janice A; Bradley, John M; Yang, Yong-Feng et al. (2015) Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork. PLoS One 10:e0122483
Vranka, Janice A; Kelley, Mary J; Acott, Ted S et al. (2015) Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 133:112-25
Abu-Hassan, Diala W; Li, Xinbo; Ryan, Eileen I et al. (2015) Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33:751-61
Keller, Kate E; Yang, Yong-Feng; Sun, Ying Ying et al. (2014) Interleukin-20 receptor expression in the trabecular meshwork and its implication in glaucoma. J Ocul Pharmacol Ther 30:267-76
Acott, Ted S; Kelley, Mary J; Keller, Kate E et al. (2014) Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. J Ocul Pharmacol Ther 30:94-101

Showing the most recent 10 out of 52 publications