Our long-term objective has been to develop a set of noninvasive techniques for studying the human retina. By applying novel techniques and current theories of phototransduction to the full-field electroretinogram (ERG), we have successfully developed widely-used noninvasive techniques for studying the global activity of the rod and cone receptors, as well as the rod bipolar cells. However, many of the planned and/or anticipated clinical trials involving diseases of the receptors require localized measures of retinal function for evaluating treatment efficacy. In the past, we have worked with the two most popular techniques for measuring local retinal activity, the multifocal electroretinogram (mfERG) and, static automated perimetry (SAP), the behavioral measure of local sensitivity of the visual field. Because these techniques have severe limitations for use in clinical trials, we have turned to a new noninvasive technique for measuring the structure (anatomy) of the retina, frequency domain optical coherence tomography (fdOCT). As part of Aim 1, we intend to explore the relationship between a fdOCT measure of the loss of receptors and the loss of visual function, as measured with SAP and mfERGs, in corresponding regions of the field. These data will allow for the testing of hypotheses about the functional consequences of different genetic types of retinitis pigmentosa (RP) and other types of retinal degenerative diseases. A quantitative comparison of the fdOCT measures to visual field loss will allow us to evaluate the utility of the fdOCT for use in clinical trials. Therapeutic and prosthetic approaches to the treatment of diseases of the receptors depend upon viable post-receptor cells, especially retinal ganglion cells (RGCs) and their axons. Current techniques are not able to make this assessment in patients with diseases of the receptors, as they depend upon functioning receptors. As part of Aim 2, we will assess the structural integrity of post receptor cells, especially (RGCs) and their axons using fdOCT. In addition, to better understand these measurements, patients will be studied with a different noninvasive technique for measuring retinal anatomy, scanning laser polarimetry. Finally, as part of Aim 3, we develop a unique approach and generate a unique data set for evaluating the performance of commercial fdOCT machines and computer software, which purport to measure specific retinal layers.

Public Health Relevance

Many retinal diseases cause blindness by attacking the photoreceptors while others attack post-receptor cells. We are developing noninvasive techniques for assessing the mechanisms by which a disease affects different retinal cells. These same techniques can enable the ophthalmologist to monitor the health of these cells and, thus the effectiveness of alternative treatments.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY009076-18
Application #
7726320
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Neuhold, Lisa
Project Start
1991-05-01
Project End
2012-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
18
Fiscal Year
2009
Total Cost
$388,038
Indirect Cost
Name
Columbia University (N.Y.)
Department
Psychology
Type
Other Domestic Higher Education
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Duncker, Tobias; Lee, Winston; Jiang, Fan et al. (2018) ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina. Retina 38:118-127
Daiger, Stephen P; Bowne, Sara J; Sullivan, Lori S et al. (2018) Molecular Findings in Families with an Initial Diagnose of Autosomal Dominant Retinitis Pigmentosa (adRP). Adv Exp Med Biol 1074:237-245
Greenstein, Vivienne C; Nunez, Jason; Lee, Winston et al. (2017) A Comparison of En Face Optical Coherence Tomography and Fundus Autofluorescence in Stargardt Disease. Invest Ophthalmol Vis Sci 58:5227-5236
Verdina, Tommaso; Greenstein, Vivienne C; Sodi, Andrea et al. (2017) Multimodal analysis of the Preferred Retinal Location and the Transition Zone in patients with Stargardt Disease. Graefes Arch Clin Exp Ophthalmol 255:1307-1317
Soens, Zachry T; Branch, Justin; Wu, Shijing et al. (2017) Leveraging splice-affecting variant predictors and a minigene validation system to identify Mendelian disease-causing variants among exon-captured variants of uncertain significance. Hum Mutat 38:1521-1533
Jones, Kaylie D; Wheaton, Dianna K; Bowne, Sara J et al. (2017) Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families. Mol Vis 23:470-481
Bennett, Lea D; Klein, Martin; Locke, Kirsten G et al. (2017) Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa. Transl Vis Sci Technol 6:15
Jung, Kyoung In; Kang, Min Ku; Choi, Jin A et al. (2016) Structure-Function Relationship in Glaucoma Patients With Parafoveal Versus Peripheral Nasal Scotoma. Invest Ophthalmol Vis Sci 57:420-8
Hariri, Amir H; Zhang, Hong Yang; Ho, Alexander et al. (2016) Quantification of Ellipsoid Zone Changes in Retinitis Pigmentosa Using en Face Spectral Domain-Optical Coherence Tomography. JAMA Ophthalmol 134:628-35
Ramachandran, Rithambara; X Cai, Cindy; Lee, Dongwon et al. (2016) Reliability of a Manual Procedure for Marking the EZ Endpoint Location in Patients with Retinitis Pigmentosa. Transl Vis Sci Technol 5:6

Showing the most recent 10 out of 126 publications