In the retina, neural function emerges from the interplay between intrinsic properties of neurons and the pattern, strength and functional characteristics of synaptic communication. Synaptic ion channels and receptors are critical sites for the regulation of cell-to-cell signalling and thus are control points for the modulation of neural function. The overall goal of this research proposal is to understand the molecular mechanisms by which two principle retinal neuromodulatory transmitter systems - DA and NO - modulate gap junctions and ionotropic glutamate receptors. The experimental approach combines electrophysiological, biochemical and molecular techniques to study synaptic modulation in retinal horizontal cells, where these modulatory systems converge. The first objective of the proposal is to elucidate the molecular structure, function and modulation of retinal gap junction channels. The second objective is to gain an understanding of the molecular mechanisms by which the NO/cGMP pathway modulates retinal glutamate receptors. The third objective is to investigate interactions between DA and NO in regulating horizontal cell function.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY009256-07
Application #
2459132
Study Section
Special Emphasis Panel (ZRG1-VISC (01))
Project Start
1991-08-01
Project End
1999-07-31
Budget Start
1997-08-01
Budget End
1998-07-31
Support Year
7
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Physiology
Type
Schools of Medicine
DUNS #
832127323
City
Lexington
State
KY
Country
United States
Zip Code
40506
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N et al. (2015) Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 307:319-37
Sun, Ziyi; Risner, Michael L; van Asselt, Jorrit B et al. (2012) Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells. J Neurophysiol 107:2624-32
Zhang, Dao-Qi; Belenky, Michael A; Sollars, Patricia J et al. (2012) Melanopsin mediates retrograde visual signaling in the retina. PLoS One 7:e42647
Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila et al. (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359-68
Klaassen, Lauw J; Sun, Ziyi; Steijaert, Marvin N et al. (2011) Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 9:e1001107
Frazao, Renata; McMahon, Douglas G; Schunack, Walter et al. (2011) Histamine elevates free intracellular calcium in mouse retinal dopaminergic cells via H1-receptors. Invest Ophthalmol Vis Sci 52:3083-8
Sun, Ziyi; Zhang, Dao-Qi; McMahon, Douglas G (2009) Zinc modulation of hemi-gap-junction channel currents in retinal horizontal cells. J Neurophysiol 101:1774-80
Zhang, Dao-Qi; Zhou, Tongrong; Ruan, Guo-Xiang et al. (2005) Circadian rhythm of Period1 clock gene expression in NOS amacrine cells of the mouse retina. Brain Res 1050:101-9
Zhang, Dao-Qi; Ribelayga, Christophe; Mangel, Stuart C et al. (2002) Suppression by zinc of AMPA receptor-mediated synaptic transmission in the retina. J Neurophysiol 88:1245-51
Zhang, D Q; McMahon, D G (2001) Gating of retinal horizontal cell hemi gap junction channels by voltage, Ca2+, and retinoic acid. Mol Vis 7:247-52

Showing the most recent 10 out of 11 publications