Sulfur-centered post-transitional modifications of the crystallins are a recurring feature in many cataractous lenses. This is especially true of maturity-onset human nuclear cataract, in which the cysteine and methionine residues of the beta and gamma crystallins are found to be chemically modified. It is generally assumed that all such modifications are cataractogenic, despite the vast chemical differences between them. In this proposal a strategy is presented to identify the general chemical determinants of cataractogenicity in a variety of crystallin modifications at the cysteine and methionine residues. This strategy is based on the hypothesis that: polar or charged modifications decrease the net attraction between proteins, and are therefore """"""""cataract-inhibiting"""""""". Conversely, marginally polar and hydrophobic modifications increase the net attraction between proteins and are therefore """"""""cataractogenic."""""""" The following Specific Aims are proposed to test this hypothesis. 1. Introduce in vitro, oxidative modifications normally found in the lens, at the sulfur centers of the beta and gamma crystallins individually and in mixtures, and measure the """"""""cataractogenic"""""""" or """"""""cataract-inhibiting"""""""" properties of the modified proteins, as defined above. 2. Examine the influence of charge, hydrophilicity and stearic effects on the cataractogenic or cataract-inhibiting tendency of the gamma crystallins and beta-gamma crystallin mixtures modified at the cysteine or methionine residues, using selected chemical modifiers. 3. Evaluate the role of alpha-crystallin and its subunits alpha-A and alpha-B in inhibiting protein aggregation due to sulfur-centered modifications of the gamma crystallins and beta gamma crystallin mixtures. 4. Determine the role of individual cysteine and methionine residues in cataractogenesis by introducing point mutations at these residues using site-directed mutagenesis. The long-term objectives are to devise strategies to prevent cataractogenic modifications in vivo. The proposed studies in Aim 2 are expected to eventually guide the development of anticataract drug candidates. Changes in the net attraction between lens crystallins will be determined by measuring Tph, the phase separation temperature and protein aggregation. SDS-PAGE, size exclusion HPLC, quasielastic light scattering and protein clouding measurements to determine Tph. Ion-exchange HPLC, low pressure chromatography, isoelectricfocusing, Raman and mass spectroscopies will be used as analytical methods for protein characterization. Molecular modeling studies will guide the selection of reagents.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY010535-08
Application #
6384392
Study Section
Visual Sciences A Study Section (VISA)
Program Officer
Liberman, Ellen S
Project Start
1994-06-01
Project End
2003-05-31
Budget Start
2001-08-01
Budget End
2003-05-31
Support Year
8
Fiscal Year
2001
Total Cost
$180,955
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Ramirez, Lisa; Shekhtman, Alexander; Pande, Jayanti (2018) Nuclear Magnetic Resonance-Based Structural Characterization and Backbone Dynamics of Recombinant Bee Venom Melittin. Biochemistry 57:2775-2785
Mallik, Prabhat K; Shi, Hua; Pande, Jayanti (2017) RNA aptamers targeted for human ?A-crystallin do not bind ?B-crystallin, and spare the ?-crystallin domain. Biochem Biophys Res Commun 491:423-428
Dixit, Karuna; Pande, Ajay; Pande, Jayanti et al. (2016) Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human ?C-Crystallin: Role of the Dipole Moment in Protein Solubility. Biochemistry 55:3136-49
Banerjee, Priya R; Pande, Ajay; Shekhtman, Alexander et al. (2015) Molecular mechanism of the chaperone function of mini-?-crystallin, a 19-residue peptide of human ?-crystallin. Biochemistry 54:505-15
Pande, Ajay; Mokhor, Natalya; Pande, Jayanti (2015) Deamidation of Human ?S-Crystallin Increases Attractive Protein Interactions: Implications for Cataract. Biochemistry 54:4890-9
Bharat, Somireddy Venkata; Shekhtman, Alexander; Pande, Jayanti (2014) The cataract-associated V41M mutant of human ?S-crystallin shows specific structural changes that directly enhance local surface hydrophobicity. Biochem Biophys Res Commun 443:110-4
Banerjee, Priya R; Puttamadappa, Shadakshara S; Pande, Ajay et al. (2011) Increased hydrophobicity and decreased backbone flexibility explain the lower solubility of a cataract-linked mutant of ?D-crystallin. J Mol Biol 412:647-59
Banerjee, Priya R; Pande, Ajay; Patrosz, Julita et al. (2011) Cataract-associated mutant E107A of human gammaD-crystallin shows increased attraction to alpha-crystallin and enhanced light scattering. Proc Natl Acad Sci U S A 108:574-9
Ghosh, Kalyan S; Pande, Ajay; Pande, Jayanti (2011) Binding of ?-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone ?-crystallin. Biochemistry 50:3279-81
Danysh, Brian P; Patel, Tapan P; Czymmek, Kirk J et al. (2010) Characterizing molecular diffusion in the lens capsule. Matrix Biol 29:228-36

Showing the most recent 10 out of 28 publications