Primary open angle glaucoma (POAG) is a leading cause of blindness in developed countries. While this disorder has a strong genetic component, the study of the molecular genetics of POAG has been hindered by the genetic complexity and heterogeneity of the disorder. To date, success in elucidating the genetics of glaucoma has been limited to the identification of loci and genes that play a role in a small percentage of cases. New genotyping methods now make it possible to search for marker alleles that contribute to the relative risk of developing POAG by performing genome wide association studies. In this study, we will perform high density SNP genotyping across the whole human genome to identify alleles associated with glaucoma. Alleles identified in the initial screen will be verified by genotyping a second glaucoma cohort and a second control cohort. In addition, we will determine whether SNPs highly associated with POAG in the original cohort population are also associated with POAG in ethnically diverse POAG cohorts. Furthermore, we will take advantage of a novel method of analysis of SNP genotyping data to search for genomic deletions or duplications (copy number variation) implicated in glaucoma. Whole genome high density SNP genotyping, as well as the copy number variation analysis, have the potential to identify loci contributing to the risk of developing POAG. In addition to the genome-wide SNP study, we will evaluate candidate genes to search for glaucoma causing genes. Candidate genes for mutations screening will be identified using a combination of expression, functional and positional information.
Showing the most recent 10 out of 54 publications