Polypeptide factors that bind to cell surface receptors are powerful mediators of cell-cell communication and have important roles in physiology and disease. The existence of a large number of unidentified polypeptide factors is implied by the identification of """"""""orphan receptors"""""""" which appear to be cell surface receptors but for which the ligands are unknown. Identification of these ligands is a critical step in understanding the biology of the orphan receptors, and will also provide important advances in our understanding of cell-cell interaction in general. Moreover, many of the ligands will be good candidates for therapeutic use. We recently identified the ligand (KL) of the orphan receptor tyrosine kinase encoded by the c-kit proto-oncogene by a generally applicable approach: the receptor extracellular domain was genetically fused to placental alkaline phosphatase, producing a soluble receptor affinity reagent with an enzyme tag that could be easily and sensitively traced. The major objective of the present proposal is to develop our soluble receptor affinity approach further, and apply it to identify the ligand of an orphan receptor protein tyrosine phosphatase. Although orphan receptor tyrosine phosphatases are being identified at a rapid rate, little information is available on any of their ligands. Nonetheless, the involvement of the receptors in the control of tyrosine phosphorylation indicates that the ligands are likely to have potent biological effects. In addition to our work on phosphatases, we will perform experiments on the interaction of the c-kit receptor and its recently identified ligand KL. These experiments will have two goals. The first will be to develop methods that can be applied to receptor tyrosine phosphatases and other orphan receptors. The second goal will be to concurrently derive useful information on the biology of c-kit and KL. Studies with the soluble receptor fusion protein are designed to provide important new information on the distribution and the isoforms of the KL polypeptide that are present in tissues. We will also carry out a structure / function analysis of the interaction of c-kit and KL. This will allow us to map functional domains and also to investigate the functional interrelationships between ligand-receptor binding, cell-cell adhesion, proliferation and migration, all of which may be mediated by KL.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011559-06
Application #
2545882
Study Section
Special Emphasis Panel (ZRG1-VISB (06))
Project Start
1996-09-30
Project End
2001-09-29
Budget Start
1997-09-30
Budget End
1998-09-29
Support Year
6
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Harvard University
Department
Physiology
Type
Schools of Medicine
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Preitner, Nicolas; Quan, Jie; Li, Xinmin et al. (2016) IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories. Development 143:2753-9
Preitner, Nicolas; Quan, Jie; Nowakowski, Dan W et al. (2014) APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158:368-382
Hancock, Melissa L; Preitner, Nicolas; Quan, Jie et al. (2014) MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 34:66-78
Preitner, Nicolas; Quan, Jie; Flanagan, John G (2013) This message will self-destruct: NMD regulates axon guidance. Cell 153:1185-7
Preitner, Nicolas; Flanagan, John G (2012) Axonal mRNA translation: an unexpected link to axon survival and the mitochondrion. Neuron 73:629-31
Coles, Charlotte H; Shen, Yingjie; Tenney, Alan P et al. (2011) Proteoglycan-specific molecular switch for RPTP? clustering and neuronal extension. Science 332:484-8
Tcherkezian, Joseph; Brittis, Perry A; Thomas, Franziska et al. (2010) Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141:632-44
Shen, Yingjie; Tenney, Alan P; Busch, Sarah A et al. (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592-6
Chen, Yao; Mohammadi, Moosa; Flanagan, John G (2009) Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels. Neuron 62:773-80
Osterfield, Miriam; Egelund, Rikke; Young, Lauren M et al. (2008) Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development 135:1189-99

Showing the most recent 10 out of 16 publications