Vision in civilized man is mediated largely by cone photoreceptors. Despite the importance of cones, much more is known about the biology of rods. The first step in visual perception is absorption of a photon by a visual pigment molecule, which induces 11-cis to all-trans isomerization of the retinaldehyde chromophore. Before light-sensitivity can be restored, all-trans-retinaldehyde must be re-isomerized to 11-cis-retinaldehyde. This involves a multi-step process called the visual cycle, which has been worked out mainly in rod-dominant species. Several lines of published evidence suggest that cone photoreceptors regenerate visual pigment by an alternate pathway. Nothing is known, however, about the biochemistry of this alternate pathway. We have recently identified three new catalytic activities in cone-dominant ground squirrel and chicken retinas that mediate regeneration of 11-cis-retinaldehyde from all-trans-retinol.
The first aim of this application will be to purify and clone the mRNA for: (1) a new 11-cis-retinol dehydrogenase distinct from the 11-cis-retinol dehydrogenase type-5 in retinal pigment epithelial cells; (2) an all-trans-retinol isomerase that catalyzes the direct conversion of all-trans-retinol to 11-cis-retinol utilizing fatty-acyl-CoAs as an energy source; and (3) an 11-cis-retinyl-ester synthase that acts by a mechanism clearly distinct from that of lecithin-retinol acyl transferase (LRAT). We plan to characterize these proteins functionally, using in vitro biochemical, cell culture expression, and mouse transgenic/knockout systems. Recessive Stargardt's disease is an inherited form of macular degeneration caused by mutations in the ABCR gene. During the previous funding period, we generated mice with a knockout mutation in abcr. The phenotype in these animals is strikingly similar to the clinical phenotype in patients with recessive Stargardt's disease, including accumulation of lipofuscin in the retinal pigment epithelium. Lipofuscin accumulation appears to be a critical event in the development of retinal pathology.
The second aim of this application is to test a promising strategy for inhibiting lipofuscin deposition and photoreceptor degeneration in abcr-/- mice. If successful, this strategy should lead to the initiation of clinical trials on patients with active Stargardt's disease.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Dudley, Peter A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Lenis, Tamara L; Hu, Jane; Ng, Sze Yin et al. (2018) Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A 115:E11120-E11127
Cook, Jeremy D; Ng, Sze Yin; Lloyd, Marcia et al. (2017) Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 292:21407-21416
Kaylor, Joanna J; Xu, Tongzhou; Ingram, Norianne T et al. (2017) Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 8:16
Kaylor, Joanna J; Radu, Roxana A; Bischoff, Nicholas et al. (2015) Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS One 10:e0125921
Kaylor, Joanna J; Cook, Jeremy D; Makshanoff, Jacob et al. (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 111:7302-7
Sato, Kota; Li, Songhua; Gordon, William C et al. (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 33:17458-68
Kaylor, Joanna J; Yuan, Quan; Cook, Jeremy et al. (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30-6
Kawaguchi, Riki; Yu, Jiamei; Ter-Stepanian, Mariam et al. (2011) Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem Biol 6:1041-51
Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang et al. (2011) Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 52:3483-91
Radu, Roxana A; Hu, Jane; Yuan, Quan et al. (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286:18593-601

Showing the most recent 10 out of 22 publications