Visual systems must be matched (via evolution and learning over the lifespan) to the natural tasks organisms perform to survive and reproduce. Thus, it is of fundamental importance to analyze visual systems with respect to natural tasks and to the statistical properties of natural stimuli relevant to performing those tasks. In our lab we call this """"""""natural systems analysis."""""""" This novel approach to vision science is composed of several steps: (1) identify natural tasks, (2) measure the natural scene statistics relevant for those tasks, (3) determine how to optimally use those statistics to perform the tasks, given appropriate biological constraints, and (4) use the first three steps to formulate principled hypotheses which are tested and refined in behavioral or physiological experiments. Using a unique suite of measurement devices, computational tools, and psychophysical paradigms developed in our laboratory, we propose to tackle (within the framework of natural systems analysis) four fundamental and interrelated classes of visual tasks: (1) image interpolation, where the goal is to estimate missing retinal image information due to occluding surfaces, normal cone sampling, or abnormal cone loss, (2) estimation of object (surface) boundary locations and which side of the boundary is in the foreground (nearer), (3) defocus estimation, where the goal is to estimate the magnitude and sign of image defocus in local regions of the retinal image, and (4) contrast and sharpness estimation in the visual periphery, where the ganglion cells severely filter and down sample the retinal image. The overall aim of tackling tasks (1) and (2) is to build an integrated picture of how the visual system identifies occlusion regions and interpolates behind them under natural conditions. The overall aim of tackling tasks (3) and (4) is to understand how the visual system estimates defocus and contrast in the fovea and periphery, which are relevant to the first two tasks. Many of the proposed studies will be the first to precisely characterize the statistical constraints in natural images underlying the visual system's ability to perform these tasks accurately. Many of the proposed studies will also be the first to measure performance in these fundamental tasks using natural stimuli. Promising pilot data has been obtained in many of the proposed studies.

Public Health Relevance

Ultimate goals of vision science are to understand vision in the real world and to mitigate the effects of visual dysfunction on real-world performance. The proposed studies based on measuring the task-relevant statistics of natural images, and determining how best to use those statistical properties in natural tasks, will provide rigorous steps toward those ultimate goals and may produce useful image-processing applications.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011747-16
Application #
8452662
Study Section
Special Emphasis Panel (SPC)
Program Officer
Wiggs, Cheri
Project Start
1997-06-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
16
Fiscal Year
2013
Total Cost
$358,708
Indirect Cost
$121,207
Name
University of Texas Austin
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
170230239
City
Austin
State
TX
Country
United States
Zip Code
78712
Michel, Melchi M; Chen, Yuzhi; Seidemann, Eyal et al. (2018) Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model. J Neurosci 38:10069-10079
McCann, Brian C; Hayhoe, Mary M; Geisler, Wilson S (2018) Contributions of monocular and binocular cues to distance discrimination in natural scenes. J Vis 18:12
Wang, Jiaxing; Struebing, Felix L; Ferdous, Salma et al. (2018) Differential Exon Expression in a Large Family of Retinal Genes Is Regulated by a Single Trans Locus. Adv Exp Med Biol 1074:413-420
Geisler, Wilson S (2018) Psychometric functions of uncertain template matching observers. J Vis 18:1
Sebastian, Stephen; Geisler, Wilson S (2018) Decision-variable correlation. J Vis 18:3
Kim, Seha; Burge, Johannes (2018) The lawful imprecision of human surface tilt estimation in natural scenes. Elife 7:
Sebastian, Stephen; Abrams, Jared; Geisler, Wilson S (2017) Constrained sampling experiments reveal principles of detection in natural scenes. Proc Natl Acad Sci U S A 114:E5731-E5740
Jaini, Priyank; Burge, Johannes (2017) Linking normative models of natural tasks to descriptive models of neural response. J Vis 17:16
Burge, Johannes; McCann, Brian C; Geisler, Wilson S (2016) Estimating 3D tilt from local image cues in natural scenes. J Vis 16:2
Burge, Johannes; Geisler, Wilson S (2015) Optimal speed estimation in natural image movies predicts human performance. Nat Commun 6:7900

Showing the most recent 10 out of 34 publications