This project addresses neurovascular injury during ischemic retinopathy. While this condition is associated with early neurovascular dysfunction, conventional therapies target clinically significant macula edema or neovascularization, which occur much later. Therapy to prevent/reverse ischemic retinal injury is a critical unmet need. The project goal is to delineate mechanisms of vascular and neuronal injury during retinopathy and identify novel therapeutic strategies. The investigators'studies in models of ischemic retinopathy have revealed that the urea cycle enzyme arginase is critically involved in both vascular and neuronal injury. Arginase metabolizes L-arginine to form proline, polyamines and glutamate. Excessive arginase activity reduces the L-arginine supply for nitric oxide synthase (NOS), causing it to become uncoupled and produce superoxide and less NO. Superoxide and NO react rapidly and form the toxic oxidant peroxynitrite. Glutamate and the catabolic products of polyamine oxidation can induce more oxidative stress and DNA damage, both of which can cause mitochondrial injury and premature senescence. Preliminary data show that neurovascular injury during retinopathy is associated with increased arginase expression/activity, decreased NO, polyamine oxidation, increased formation of superoxide and peroxynitrite, mitochondrial injury and premature senescence. Furthermore, the cytosolic isoform arginase 1 (A1) is implicated in premature senescence and dysfunction of vascular endothelial cells (EC), whereas the mitochondrial isoform arginase 2 (A2) appears to be involved in neuronal dysfunction/injury. Thus, it is hypothesized that activation of the arginase pathway causes neurovascular injury by uncoupling NOS and inducing polyamine oxidation and glutamate formation, thereby reducing NO and increasing oxidative stress, leading to mitochondrial dysfunction, EC senescence and vascular and neuronal dysfunction.
Aim 1 will use animal and tissue culture models to test whether (A) limiting A1 expression will prevent vascular dysfunction by blocking NOS uncoupling, reducing oxidative stress and preventing mitochondrial dysfunction and senescence of ECs;(B) limiting A2 expression will prevent neuronal injury by blocking polyamine oxidation and glutamate formation, reducing oxidative stress and preventing mitochondrial and neuronal dysfunction.
Aim 2 will determine the effects on neurovascular dysfunction and injury of novel therapies designed to limit arginase activity, restore NO availability and reduce oxidative stress. Innovation: This application will, for the firt time, investigate the role of arginase in retinal neurovascular injury. The studies will use molecular approaches to manipulate A1 and A2 expression in combination with real-time vascular imaging, electroretinography and morphometric analyses of neuronal and vascular injury. Therapeutic effects of limiting arginase activity and increasing NO will also be tested. Th research is expected to significantly advance the mechanistic understanding of retinal neurovascular injury and facilitate development of novel strategies for prevention and treatment of ischemic retinopathy.

Public Health Relevance

Lack of blood flow to the retina in diabetic retinopathy and other forms of ischemic retinopathy often leads to blindness. Strong evidence is presented to show that ischemia-induced activity of a particular enzyme pathway initiates a series of events resulting in vascular and neural damage and retinal dysfunction, thereby impairing vision. The proposed studies will define critical steps in the pathological process and test whether novel agents can block this pathway to maintain retinal blood flow and prevent retinal damage and vision loss.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011766-15
Application #
8619630
Study Section
Special Emphasis Panel (ZRG1-BDCN-H (02))
Program Officer
Shen, Grace L
Project Start
1998-03-01
Project End
2018-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
15
Fiscal Year
2014
Total Cost
$406,490
Indirect Cost
$135,497
Name
Georgia Regents University
Department
Biology
Type
Schools of Medicine
DUNS #
966668691
City
Augusta
State
GA
Country
United States
Zip Code
30912
Shosha, Esraa; Xu, Zhimin; Narayanan, S Priya et al. (2018) Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. Int J Mol Sci 19:
Fouda, Abdelrahman Y; Xu, Zhimin; Shosha, Esraa et al. (2018) Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death Dis 9:1001
Chandra, Surabhi; Fulton, David J R; Caldwell, Ruth B et al. (2018) Hyperglycemia-impaired aortic vasorelaxation mediated through arginase elevation: Role of stress kinase pathways. Eur J Pharmacol 844:26-37
Zhang, Hanfang; Hudson, Farlyn Z; Xu, Zhimin et al. (2018) Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. Invest Ophthalmol Vis Sci 59:2520-2528
Caldwell, R William; Rodriguez, Paulo C; Toque, Haroldo A et al. (2018) Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 98:641-665
Rojas, Modesto A; Shen, Zu T; Caldwell, Ruth B et al. (2018) Blockade of TREM-1 prevents vitreoretinal neovascularization in mice with oxygen-induced retinopathy. Biochim Biophys Acta Mol Basis Dis 1864:2761-2768
Rojas, Modesto; Lemtalsi, Tahira; Toque, Haroldo A et al. (2017) NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence. Antioxidants (Basel) 6:
Toque, Haroldo A; Fernandez-Flores, Aracely; Mohamed, Riyaz et al. (2017) Netrin-1 is a novel regulator of vascular endothelial function in diabetes. PLoS One 12:e0186734
Bhatta, Anil; Yao, Lin; Xu, Zhimin et al. (2017) Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovasc Res 113:1664-1676
Yao, Lin; Bhatta, Anil; Xu, Zhimin et al. (2017) Obesity-induced vascular inflammation involves elevated arginase activity. Am J Physiol Regul Integr Comp Physiol 313:R560-R571

Showing the most recent 10 out of 85 publications