The forebrain is the most anterior portion of the central nervous system and gives rises to the telencephalon, diencephalon, and the eyes during development. All derivatives of the forebrain originate from the anterior neural plate. Therefore, mutations in genes that disrupt forebrain development provide a powerful tool for dissecting the mechanisms that regionalize the neural plate, establish fate restrictions, and determine the identities of all its main derivatives. We have demonstrated that the restricted pattern of Six3 expression is of functional relevance as its activity is essential for vertebrate forebrain, lens and retina development. The goal of this proposal is to continue with the systematic identification and characterization of the functional roles of Six3 during forebrain and visual system development as a tool to help us unravel the cellular and molecular mechanisms participating in the genesis of these structures. During the last few years we have generated an invaluable collection of animal models and molecular tools that are a great asset in the accomplishment of the proposed goals. To this end, we propose to continue using Six3 as an entry point to better characterize its functional role in the development of different brain structures and retina differentiation and lamination.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012162-11
Application #
7741657
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Araj, Houmam H
Project Start
1998-03-01
Project End
2011-11-30
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
11
Fiscal Year
2010
Total Cost
$415,800
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Acosta, Sandra; Fiore, Luciano; Carota, Isabel Anna et al. (2018) Use of two gRNAs for CRISPR/Cas9 improves bi-allelic homologous recombination efficiency in mouse embryonic stem cells. Genesis 56:e23212
Takata, Nozomu; Abbey, Deepti; Fiore, Luciano et al. (2017) An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation. Cell Rep 21:1534-1549
Geng, Xin; Acosta, Sandra; Lagutin, Oleg et al. (2016) Six3 dosage mediates the pathogenesis of holoprosencephaly. Development 143:4462-4473
Lavado, Alfonso; Oliver, Guillermo (2014) Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev Biol 388:11-21
Lavado, Alfonso; Oliver, Guillermo (2011) Six3 is required for ependymal cell maturation. Development 138:5291-300
McGovern, Suzanne; Pan, Jie; Oliver, Guillermo et al. (2010) The role of hypoxia and neurogenic genes (Mash-1 and Prox-1) in the developmental programming and maturation of pulmonary neuroendocrine cells in fetal mouse lung. Lab Invest 90:180-95
Lavado, Alfonso; Lagutin, Oleg V; Oliver, Guillermo (2008) Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon. Development 135:441-50
Geng, Xin; Lavado, Alfonso; Lagutin, Oleg V et al. (2007) Expression of Six3 Opposite Strand (Six3OS) during mouse embryonic development. Gene Expr Patterns 7:252-7
Lim, Jae H; Booker, Anne B; Luo, Ting et al. (2005) AP-2alpha selectively regulates fragile X mental retardation-1 gene transcription during embryonic development. Hum Mol Genet 14:2027-34
Purcell, Patricia; Oliver, Guillermo; Mardon, Graeme et al. (2005) Pax6-dependence of Six3, Eya1 and Dach1 expression during lens and nasal placode induction. Gene Expr Patterns 6:110-8

Showing the most recent 10 out of 24 publications