The long-term goal of this program is to elucidate the molecular mechanisms of mammalian lens development through studies of DNA-binding transcription factor Pax6. Previous studies have shown that Pax6 is essential for establishing lens progenitor cells and regulation of crystallin gene expression. However, additional roles of Pax6 in lens morphogenesis remain to be determined. Genetic studies have shown that Pax6 regulates cell cycle exit of lens precursor cells. The external regulation of lens fiber cell differentiation is mediated by BMP and FGF signaling, through transcription factors Gata3 and Prox1. Using chromatin immunoprecipitation in combination with DNA sequencing (ChIP-seq), and RNA expression profiling in Pax6 mutant lenses, we have now identified a group of genes directly regulated by Pax6 including Prox1, FGFR2 and Etv1/ER81. Expression of Prox1 is upregulated in the posterior part of the lens vesicle and Prox1 regulates expression of Cdkn1b/p27 and Cdkn1c/p57, two proteins required for cell cycle exit of lens precursor cells. FGFR2 and Etv1/ER81 are components of FGF signaling. Gata3 expression is restricted to the posterior part of lens vesicle, and is upstream of Cdkn1b/p27 and Cdkn1c/p57. These findings suggest that the Pax6-dependent cell cycle exit includes FGFR2, Etv1/ER81, Prox1. BMP signaling regulates expression of Gata3 in Pax6-independent manner. Gata3 and Prox1 jointly regulate expression of Cdkn1b/p27 and Cdkn1c/p57. In order to carry out this long-term goal, the following specific aims are proposed: (1) To define Pax6-dependent gene regulatory networks governing expression of Prox1, FGFR2, and Etv1/ER81, and to elucidate FGF-dependent up-regulation of Prox1 in the embryonic lens. (2) To establish molecular basis of Gata3 expression in lens cells via BMP and FGF signaling. (3) To demonstrate that expression of Cdkn1b/p27 and Cdkn1c/p57 is regulated in lens by a combination of Gata3 and Prox1 at the level of transcription.
These Aims will be achieved through the identification and characterization of distal enhances in Prox1, FGFR2, Etv1/Er81 and Gata3 genes using transgenic gene reporter and cell culture studies, identification of binding sites of these factors in lens chromatn and in vitro, and identification BMP- and FGF-dependent enhancers in Gata3, and FGF- responsive enhances in Prox1 gene, respectively.

Public Health Relevance

Our application combines the study of lens cataract, a major cause of worldwide blindness, with the continued investigation of Pax6, a gene governing the formation of lens progenitor cells, lens induction, cell cycle exit of the lens precursor cells, an terminal differentiation in lens fiber cells. Mutations in PAX6 and its downstream target genes including MAF, PITX3, DNase IIb, and crystallins, are known to cause human congenital eye diseases. Disrupted regulation of lens cell cycle exit is found through depletion of the retinoblastoma protein (Rb1), E2F, Cdkn1b/p27, Cdkn1c/p57, and other proteins that are otherwise critical for understanding malignant transformation and cancer. Mutations in PAX6 also cause a variety of neurological disorders including autism, cognitive disorders, epilepsy and mental retardation. PAX6 has also been implicated in type II diabetes. Mutations in FGFR2 cause Apert-Crouzon syndrome characterized by craniofacial abnormalities. Although no eye abnormalities were reported in GATA3 haplo-insufficiency, heterozygous mutations in this gene are linked to hypoparathyroidism, sensori-neural deafness and renal dysplasia syndrome.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
6R01EY012200-17
Application #
9172490
Study Section
Special Emphasis Panel (ZRG1-BDCN-H (02))
Program Officer
Araj, Houmam H
Project Start
2000-01-01
Project End
2017-12-31
Budget Start
2015-09-01
Budget End
2015-12-31
Support Year
17
Fiscal Year
2015
Total Cost
$177,909
Indirect Cost
$71,377
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Martynova, Elena; Bouchard, Maxime; Musil, Linda S et al. (2018) Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 247:1186-1198
Zhao, Yilin; Wilmarth, Phillip A; Cheng, Catherine et al. (2018) Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 179:32-46
Diacou, Raven; Zhao, Yilin; Zheng, Deyou et al. (2018) Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep 25:2510-2523.e4
Esteban-Martínez, Lorena; Sierra-Filardi, Elena; McGreal, Rebecca S et al. (2017) Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J 36:1688-1706
Cvekl, Ales; Zhao, Yilin; McGreal, Rebecca et al. (2017) Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 9:2075-2092
Cvekl, Ales; Callaerts, Patrick (2017) PAX6: 25th anniversary and more to learn. Exp Eye Res 156:10-21
Liu, Wei; Cvekl, Ales (2017) Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice. Dev Biol 428:164-175
Cvekl, Ales; Zhang, Xin (2017) Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 33:677-702
Cavalheiro, Gabriel R; Matos-Rodrigues, Gabriel E; Zhao, Yilin et al. (2017) N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 429:105-117
Sun, Jian; Zhao, Yilin; McGreal, Rebecca et al. (2016) Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin 9:37

Showing the most recent 10 out of 59 publications