Vision begins when light is converted to an electrical signal in the photoreceptors. Increases in light decrease release of the neurotransmitter, glutamate, from cone and rod photoreceptor terminals, and decreases in light increase its release. These changes in synaptic glutamate concentration are detected by two classes of bipolar cells that then transmit the signal vertically through the retinal circuit to the ganglion cells. The neurotransmitter changes also are detected by horizontal cells that provide lateral transmission in the form of feedback and feedforward inhibition. There are two classes of bipolar cells, hyperpolarizing (HBCs) and depolarizing (DBCs). HBCs utilize ionotropic glutamate receptors and hyperpolarize in response to a light flash. DBCs utilize a metabotropic glutamate receptor, mGluR6, and depolarize in response to a light flash. Defects in transmission between photoreceptors and bipolar cells result in several forms of congenital stationary night blindness (CSNB). The incomplete form, CSNB2, results from mutations in genes critical to glutamate release in photoreceptors, including the ?1F subunit of voltage dependent calcium channels. The complete form results from mutations in signaling in DBCs, including mutations in mGluR6 and nyctalopin, a protein of unknown function. Signaling through DBCs is mediated via a metabotropic glutamate receptor, mGluR6, that modulates the activity of a non-specific cation channel of unknown identity. The details of this mGluR6 cascade are mostly unknown. The long term goal of this project is to characterize the molecular components required for synaptic transmission between photoreceptors and DBCs. This project has four specific aims: 1) determine the structure/function relationships of nyctalopin, 2) determine the state of the non-specific cation channel in several night blind mice, 3) determine the binding partners of nyctalopin, thereby elucidating new component of the mGluR6 cascade, and 4) create knockout mouse lines of the nyctalopin interacting proteins to determine if they result in nigh blindness. At the completion of this project, we will have identified new members critical to signal transmission in DBCs. Further, we will have identified new candidate genes for congenital stationary night blindness. Vision requires a light signal be converted to an electrical signal, which is then transmitted to the brain via a neuronal network. The group of diseases being studied are referred to as congenital stationary night blindness, and have defects in signal transmission between photoreceptors and the second neuron in the pathway. The studies in this proposal will characterize the nature of the defects and determine new proteins critical to function.
Showing the most recent 10 out of 31 publications