The goal of this research is to provide information on the growth and guidance of axons within the central nervous system, using the formation of crossed and uncrossed projections of the retina in the mouse visual system as a model. Recent work in our laboratory has demonstrated the pattern of retinal axon growth through the optic chiasm, the site where retinal axons sort before projecting to targets on the same and opposite sides of the brain. These studies, based on dye-labeling in fixed brain and real time studies of dye-labeled axons in living brain, indicate that whereas contralateral-projecting axons traverse the chiasm midline, fibers with an ipsilateral destination approach the midline, but turn back sharply toward the ipsilateral optic tract. An important feature of fiber divergence within the chiasm appears to be inhibition of uncrossed fiber extension and permissive advance of crossed fibers at the chiasm midline. We have localized a palisade of radial glia restricted to the midline zone, a candidate for such a dual cue. Moreover, studies based on unilateral eye removal suggest that interactions with fibers from the opposite eye are required to fully effect axon divergence of uncrossed fibers. The proposed research will provide information on the mechanism of axon guidance in the optic chiasm. First, the behavior and interactions of retinal axon growth cones with cellular constituents of the midline zone will be defined, using dye labeling in fixed and living preparations, combined with immunocytochemistry and electron microscopy. In vitro assay systems will be developed by which to test the role of cells in the chiasm midline in inhibition or extension across the midline, and whether contact and/or tropic mechanisms are involved. Second, the role of fiber-fiber interactions will be investigated as an auxilliary mechanism in the divergence. Third, this system and analysis will be used to define in a wider sense, how growth cone morphology reflects growth cone behavior and cell-cell interactions. This work should elucidate the signalling mechanisms used for axon navigation in this CNS pathway, a model for the patterning of bilateral projections, and provide a dynamic analysis of growth cone kinetics and interactions.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012736-15
Application #
6635684
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Oberdorfer, Michael
Project Start
1999-07-01
Project End
2004-07-31
Budget Start
2003-07-01
Budget End
2004-07-31
Support Year
15
Fiscal Year
2003
Total Cost
$324,907
Indirect Cost
Name
Columbia University (N.Y.)
Department
Pathology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Iwai-Takekoshi, Lena; Balasubramanian, Revathi; Sitko, Austen et al. (2018) Activation of Wnt signaling reduces ipsilaterally projecting retinal ganglion cells in pigmented retina. Development 145:
Sitko, Austen A; Kuwajima, Takaaki; Mason, Carol A (2018) Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J Comp Neurol 526:1077-1096
Lee, Melissa A; Sitko, Austen A; Khalid, Sania et al. (2018) Spatiotemporal distribution of glia in and around the developing mouse optic tract. J Comp Neurol :
Kuwajima, Takaaki; Soares, Célia A; Sitko, Austen A et al. (2017) SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System. Neuron 93:1110-1125.e5
Wang, Qing; Marcucci, Florencia; Cerullo, Isadora et al. (2016) Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 3:
Crair, Michael C; Mason, Carol A (2016) Reconnecting Eye to Brain. J Neurosci 36:10707-10722
Iwai-Takekoshi, Lena; Ramos, Anna; Schaler, Ari et al. (2016) Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol 524:3696-3716
Marcucci, Florencia; Murcia-Belmonte, Veronica; Wang, Qing et al. (2016) The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells. Cell Rep 17:3153-3164
Panza, Paolo; Sitko, Austen A; Maischein, Hans-Martin et al. (2015) The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Dev 10:23
Soares, Célia A; Mason, Carol A (2015) Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance. Dev Neurobiol 75:1385-401

Showing the most recent 10 out of 38 publications