The long term objectives of this project are to identify the proteins that form retinal gap junctions and to understand the molecular mechanisms of their regulation. Gap junctions, ubiquitous mediators of intercellular communication, play a prominent role in the visual system. Most types of retinal neurons are connected by gap junctions and their modulation during visual adaptation has profound effects on sensitivity and receptive field properties of many neurons and influences the path of signal flow in the mammalian rod circuit. At least two pathways are known to modulate certain retinal gap junctions: a dopamine/PKA and a nitric oxide/PKG pathway. In order to understand fully the regulation of retinal gap junctions, molecular characterization of the gap junction properties and their modulation is needed. We have cloned two perch retinal gap junction proteins, connexins (Cx) 35 and 34.7, which have defined the new gamma branch of the connexin gene family. These are the first connexins to be found primarily in retinal and brain neurons. We now plan to study how the gamma connexins contribute to the gap junctional properties observed in retinal neurons. The general strategy we will use is to identify characteristic molecular and biophysical properties of the connexins in isolated systems and relate them to properties of the gap junctions in the retina. The specific objectives of this proposal are (1) to identify the cells expressing each connexin; (2) to identify and characterize mammalian homologous of the gamma connexins; (3) to examine the differences in permeability properties of the closely related gamma connexins; and (4) to characterize the regulation of the connexins by protein kinases. A variety of biochemical, biophysical, and molecular techniques will be employed to achieve these goals. These studies will provide a detailed analysis of the regulation of this critical group of connexins that play a vital role in the retinal circuitry. The results will lay the groundwork for understanding defects in gap junctional coupling that may lead to neurological disorders.
Showing the most recent 10 out of 37 publications