Connexins are the subunit proteins of gap junctions, which allow the exchange of ions, second messengers and small metabolites between adjacent cells through intercellular channels. Gap junctional communication is important in the development and maintenance of lens, as mutations in lens connexin genes cause cataract and developmental defects in humans and mice. Signal transduction pathways have also been shown to play critical roles in lens development and homeostasis, and mutations in signaling genes like phosphatase and tensin homolog (PTEN) cause complex human syndromic disorders that include cataract. Although great progress has been made, there are still substantial gaps in our knowledge about potential cooperation between these two different intercellular communication systems. In this proposal, our objective is to further define how gap junctional communication interacts with other intercellular signal transduction pathways in the lens. We propose first to examine the consequences of PI3K deficiency by generating and characterizing conditional knockout mice lacking the p110a and p110b catalytic subunits of PI3K in the lens. Second, we will make conditional knockout mice lacking PTEN in the lens, and examine their phenotype. Finally, we will investigate interactions between lens gap junctional coupling and the PI3K/Akt and PTEN signaling pathways in postnatal growth and homeostasis by using pharmacological blockers, electrophysiological measurements and biochemical assays in vitro. We will also cross PI3K and PTEN conditional knockout animals with connexin knockout mice to confirm interactions in vivo. These studies will provide insights into how gap junctional coupling and signal transduction pathways synergistically interact to regulate lens growth and homeostasis by combining in vitro pharmacological and electrophysiological assays with in vivo animal models. They also will broaden the general paradigm of how an integrated system of intercellular communication contributes to the regulation of development in many tissues.

Public Health Relevance

Mutations in connexin genes cause a broad spectrum of human health problems including cataract and ocular developmental defects in humans and mice. Mutations in phosphatase and tensin homolog (PTEN) cause a complex human syndromic disorder that includes cataract. Genetic studies have revealed much about cataract causing mutations in these different genes, but there are still substantial gaps in our knowledge about potential cooperation between these two different intercellular communication systems in preventing cataract in the normal lens. The proposed studies will further characterize these genes that cause congenital cataract, and also further characterize the control of the cell cycle in lens epithelia by integrated communication pathways.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
4R01EY013163-15
Application #
8973549
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Araj, Houmam H
Project Start
2000-07-01
Project End
2017-11-30
Budget Start
2015-12-01
Budget End
2017-11-30
Support Year
15
Fiscal Year
2016
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Physiology
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Youssefian, Leila; Vahidnezhad, Hassan; Saeidian, Amir Hossein et al. (2018) A novel autosomal recessive GJB2-associated disorder: Ichthyosis follicularis, bilateral severe sensorineural hearing loss, and punctate palmoplantar keratoderma. Hum Mutat :
Srinivas, Miduturu; Verselis, Vytas K; White, Thomas W (2018) Human diseases associated with connexin mutations. Biochim Biophys Acta Biomembr 1860:192-201
Hu, Zhengping; Shi, Wen; Riquelme, Manuel A et al. (2017) Connexin 50 Functions as an Adhesive Molecule and Promotes Lens Cell Differentiation. Sci Rep 7:5298
Sellitto, Caterina; Li, Leping; Vaghefi, Ehsan et al. (2016) The Phosphoinosotide 3-Kinase Catalytic Subunit p110? is Required for Normal Lens Growth. Invest Ophthalmol Vis Sci 57:3145-51
Gao, Junyuan; Sun, Xiurong; White, Thomas W et al. (2015) Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens. Biophys J 109:1830-9
Martinez, Jennifer M; Wang, Hong-Zhan; Lin, Richard Z et al. (2015) Differential regulation of Connexin50 and Connexin46 by PI3K signaling. FEBS Lett 589:1340-5
Shi, Qian; Gu, Sumin; Yu, X Sean et al. (2015) Connexin Controls Cell-Cycle Exit and Cell Differentiation by Directly Promoting Cytosolic Localization and Degradation of E3 Ligase Skp2. Dev Cell 35:483-96
Rubinos, Clio; Villone, Krista; Mhaske, Pallavi V et al. (2014) Functional effects of Cx50 mutations associated with congenital cataracts. Am J Physiol Cell Physiol 306:C212-20
Slavi, Nefeli; Rubinos, Clio; Li, Leping et al. (2014) Connexin 46 (cx46) gap junctions provide a pathway for the delivery of glutathione to the lens nucleus. J Biol Chem 289:32694-702
Sellitto, Caterina; Li, Leping; Gao, Junyuan et al. (2013) AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development. J Clin Invest 123:5401-9

Showing the most recent 10 out of 52 publications