Lens formation requires a chronologically and spatially executed program of cell division and proliferation, as well as exit from the cell cycle and differentiation into lens fibers. These processes are controlled in most cell types by the timely degradation of cell cycle regulators by Ubiquitin Proteasome Pathways (UPPs). Aberrations, in these processes frequently result in microphthalmia or cataract. Yet there are few published papers that address either the lens cell cycle or its control by- UPPs. During the ongoing grant, we demonstrated that Ub and Ubc3 (a Ub ligase) are required for proliferation and differentiation. However, regulation of the cell cycle by-these moieties occurs at the G2/M transition and not, as predicted, at G1/S. We now seek to determine if the same controls are observed in vivo by directing expression of mutant Ub to the epithelial and differentiating lens cells in transgenic animals. Our recent data beget two new overall hypotheses: 1) proteolysis involving Ub and Ubc3 is required for proliferation, differentiation, and lens formation in vivo; 2) a UPP which involves an undescribed Ubc3-E3 interaction is involved in control of G2/M events in lens. These overall hypotheses are separated into 4 specific aims, to test the hypotheses that: an active UPP is required for proliferation, differentiation and lens formation in vivo; ubiquitination is required for the lens cell cycle, particularly in G2/M; lens Ubc3 cooperates with an E3, which we will identify, to control the G2/M transition; and control of the cell: cycle at G2/M requires ubiquitination of the APC regulators in a Ubc3-dependent process. These studies will address a major objective of the NEI lens and cataract program: to characterize controls of lens cell division and differentiation, and their roles in formation of secondary cataract. The long-term objective is to prolong function of 1) the natural lens by gaining a better understanding of processes involved in control of lens cell proliferation and differentiation, as well as in lens formation, and 2) implanted lenses by limiting secondary cataract due to overgrowth. Our recent papers show that these results will also lead to a better understanding of corneal wound healing and retina responses to stress. This information, and our novel """"""""reagents"""""""", will also find use in new ways to limit secondary cataract, prolong function of glaucoma medication, limit cancer and in fighting other proliferative maladies. We are joined in this effort by excellent collaborators, each of whom is a leader in his field. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY013250-07
Application #
7342802
Study Section
Special Emphasis Panel (ZRG1-AED (01))
Program Officer
Araj, Houmam H
Project Start
2001-04-01
Project End
2009-02-28
Budget Start
2008-01-01
Budget End
2009-02-28
Support Year
7
Fiscal Year
2008
Total Cost
$338,299
Indirect Cost
Name
Tufts University
Department
Type
Schools of Medicine
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
02111
Chiu, Chung-Jung; Chang, Min-Lee; Li, Tricia et al. (2017) Visualization of Dietary Patterns and Their Associations With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 58:1404-1410
Rowan, Sheldon; Chang, Min-Lee; Reznikov, Natalie et al. (2017) Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent. Exp Eye Res 156:72-78
Rowan, Sheldon; Jiang, Shuhong; Korem, Tal et al. (2017) Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci U S A 114:E4472-E4481
Lyu, Lei; Whitcomb, Elizabeth A; Jiang, Shuhong et al. (2016) Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J 30:1087-95
Chiu, Chung-Jung; Chang, Min-Lee; Taylor, Allen (2016) Associations between Periodontal Microbiota and Death Rates. Sci Rep 6:35428
Whitcomb, Elizabeth A; Chiu, Chung-Jung; Taylor, Allen (2015) Dietary glycemia as a determinant of health and longevity. Mol Aspects Med 46:14-20
Liu, Ke; Lyu, Lei; Chin, David et al. (2015) Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proc Natl Acad Sci U S A 112:1071-6
Chaffee, Blake R; Shang, Fu; Chang, Min-Lee et al. (2014) Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly. Development 141:3388-98
Chiu, Chung-Jung; Chang, Min-Lee; Zhang, Fang Fang et al. (2014) The relationship of major American dietary patterns to age-related macular degeneration. Am J Ophthalmol 158:118-127.e1
Weikel, Karen A; Garber, Caren; Baburins, Alyssa et al. (2014) Nutritional modulation of cataract. Nutr Rev 72:30-47

Showing the most recent 10 out of 60 publications