The broad, long term goals of this grant application are to understand the molecular and cellular host responses to bacterial pathogens that are significant causes of corneal infection. Specifically, this application will focus on infections caused by Pseudomonas aeruginosa and Staphylococcus aureus. These two pathogens are among the most common causes of serious corneal infections. Strains of both pathogens have acquired significant means to resist antimicrobial therapies and elaborate a large armamentarium of virulence factors that contribute to corneal damage and loss of visual acuity. Therapies for these infections need to both reduce bacterial numbers and allow the host to have an adequate and helpful inflammatory response to clear pathogens without causing damage to the cornea. For P. aeruginosa, most of the bacteria infecting scratch-injured mouse eyes are found inside of cells, and entry requires binding to the cystic fibrosis transmembrane conductance regulator (CFTR). This leads to initiation of inflammation, including activation of transcription factors for pro-inflammatory genes, synthesis of the pro-inflammatory molecules, and initiation of the cellular influx, primarily composed of PMNs, that will both clear the pathogen but can also cause damage to the cornea. PMN influx is also controlled by the TH17 regulatory T cell network, which will also be investigated in these studies. To determine how CFTR coordinates inflammation, we will analyze the specific effectors produced by cells with wild-type CFTR that are infected with P. aeruginosa, compare these with cells lacking CFTR, and validate in animal models of corneal infection the role of the CFTR-dependent factors in bacterial clearance and corneal pathology. For S. aureus, the recent dramatic increase in methicillin-resistant S. aureus (MRSA), particularly strains elaborating the Pantone-Valentine leukocidin (PVL), makes this pathogen a significant concern as a cause of serious eye disease. The role of PVL, and antibody to PVL which is found commonly in normal human sera, will be examined in tissue culture and murine models of infection using isogenic S. aureus strains positive or negative for PVL expression, as well as immunizing mice with the PVL components to analyze how antibody modulates the course of infection. These studies should also be informative about the general role leukocidins have in the pathogenesis of S. aureus corneal infections. Further studies on MRSA strains will extend to the potential of a candidate vaccine for S. aureus infections, utilizing the poly-N-acetyl glucosamine (PNAG) surface polysaccharide as the active component of a conjugate vaccine, to ameliorate the consequences of infection. Active vaccination, as well as passive transfer studies using both polyclonal antibodies and a fully human monoclonal antibody, will be evaluated in the murine model of corneal injury to determine if PNAG is a rationale target for immunotherapy of S. aureus corneal infection. The proposed studies should ex- tend our insights into the mechanisms of bacterial virulence and effective host defense for corneal infections and provide pre-clinical data for vaccine approaches to S. aureus that could be highly effective.

Public Health Relevance

Infections of the eye surface (cornea) are the most significant cause of loss of vision and visual acuity in the world. Bacterial pathogens are very important causes of these infections, and among the most common are Pseudomonas aeruginosa and Staphylococcus aureus. This application will study how these microbes cause damage to the cornea that can result in vision loss and evaluate interventions, including vaccines, that could be used to prevent or treat these infections and minimize damage to the cornea and thus to an individual's eyesight.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY016144-07
Application #
8103857
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Mckie, George Ann
Project Start
2005-01-01
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
7
Fiscal Year
2011
Total Cost
$386,233
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Zaidi, Tanweer S; Zaidi, Tauqeer; Pier, Gerald B (2018) Antibodies to Conserved Surface Polysaccharides Protect Mice Against Bacterial Conjunctivitis. Invest Ophthalmol Vis Sci 59:2512-2519
Stevenson, Taylor C; Cywes-Bentley, Colette; Moeller, Tyler D et al. (2018) Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci U S A 115:E3106-E3115
Skurnik, David; Cywes-Bentley, Colette; Pier, Gerald B (2016) The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines 15:1041-53
Roux, Damien; Cywes-Bentley, Colette; Zhang, Yi-Fan et al. (2015) Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix. J Biol Chem 290:19261-72
Zaidi, Tanweer; Zaidi, Tauqeer; Cywes-Bentley, Colette et al. (2014) Microbiota-driven immune cellular maturation is essential for antibody-mediated adaptive immunity to Staphylococcus aureus infection in the eye. Infect Immun 82:3483-91
Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer et al. (2013) Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 110:E2209-18
Zaidi, Tanweer; Zaidi, Tauqeer; Yoong, Pauline et al. (2013) Staphylococcus aureus corneal infections: effect of the Panton-Valentine leukocidin (PVL) and antibody to PVL on virulence and pathology. Invest Ophthalmol Vis Sci 54:4430-8
Reidy, Thomas; Rittenberg, Alexander; Dwyer, Markryan et al. (2013) Homotrimeric macrophage migration inhibitory factor (MIF) drives inflammatory responses in the corneal epithelium by promoting caveolin-rich platform assembly in response to infection. J Biol Chem 288:8269-78
Zaidi, Tanweer S; Zaidi, Tauqeer; Pier, Gerald B et al. (2012) Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun 80:3706-12
Zaidi, Tanweer; Reidy, Thomas; D'Ortona, Samantha et al. (2011) CD74 deficiency ameliorates Pseudomonas aeruginosa-induced ocular infection. Sci Rep 1:58

Showing the most recent 10 out of 17 publications