Vision requires proper information transfer from photoreceptors to retinal ganglion cells (RGCs), the output neurons of the retina. This information is distributed by retinal bipolar cells (BCs) along many anatomically and functionally distinct channels. Because BC channels carry different chromatic and temporal information, the light response of a RGC is shaped by the unique combination of BC input it receives. To date, the circuitry of only a few functionally defined RGC types is known, largely because reconstructions by serial electron microscopy are technically challenging and time consuming. Using state-of-the art imaging approaches and molecular tools to visualize synapses and connectivity, we are able to readily reconstruct these circuits by light microcopy. We will establish, and compare, the connectivity patterns of three functionally distinct BC-RGC circuits in the mouse retina, in order to learn new principles or uncover distinct strategies by which BC input can shape RGC output (Aim 1). We will investigate how loss of neurotransmission (Aim 2), or death of retinal neurons (Aim 3) alters circuitry in the inner retina. Because the effects of activity blockade can vary according to how neurotransmission is perturbed in development or in disease, we will determine how disruption of input and/or output of BCs influence their connectivity with RGCs. We will use novel transgenic mice in which transmission is perturbed in distinct ways, and also mice in which activity is altered in either a few or entire populations of BCs.
In Aim 3, we will determine the potential of mature BCs and RGCs to re-connect when cells from one or the other population are ablated. We will do this by using transgenic mice in which the magnitude and timing of cell death can be controlled. These findings will be particularly significant for designing cell-based therapies to restore vision. Together, the discoveries of this project will significantly increase our understanding of the cellular mechanisms that regulate the function, assembly and repair of retinal channels necessary for conveying information from photoreceptors to RGCs.

Public Health Relevance

Normal vision requires proper assembly and maintenance of neuronal circuits in the retina. Retinal circuitry is disrupted in retinal diseases. The broad goal of this project is thus to understand the cellular mechanisms that underlie the assembly, disassembly and reassembly of retinal circuits.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY017101-09
Application #
8695402
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Greenwell, Thomas
Project Start
2006-07-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kerov, Vasily; Laird, Joseph G; Joiner, Mei-Ling et al. (2018) ?2?-4 Is Required for the Molecular and Structural Organization of Rod and Cone Photoreceptor Synapses. J Neurosci 38:6145-6160
Zhang, Chi; Kolodkin, Alex L; Wong, Rachel O et al. (2017) Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 40:395-424
Ou, Yvonne; Jo, Rebecca E; Ullian, Erik M et al. (2016) Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. J Neurosci 36:9240-52
Della Santina, Luca; Kuo, Sidney P; Yoshimatsu, Takeshi et al. (2016) Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina. Curr Biol 26:2070-2077
Chozinski, Tyler J; Halpern, Aaron R; Okawa, Haruhisa et al. (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13:485-8
Dunn, Felice A (2015) Photoreceptor ablation initiates the immediate loss of glutamate receptors in postsynaptic bipolar cells in retina. J Neurosci 35:2423-31
Okawa, Haruhisa; Hoon, Mrinalini; Yoshimatsu, Takeshi et al. (2014) Illuminating the multifaceted roles of neurotransmission in shaping neuronal circuitry. Neuron 83:1303-1318
Hoon, Mrinalini; Okawa, Haruhisa; Della Santina, Luca et al. (2014) Functional architecture of the retina: development and disease. Prog Retin Eye Res 42:44-84
Dunn, Felice A; Wong, Rachel O L (2014) Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J Physiol 592:4809-23
D'Orazi, Florence D; Suzuki, Sachihiro C; Wong, Rachel O (2014) Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 37:594-603

Showing the most recent 10 out of 22 publications