Our eyes are never at rest, even when attending to a single point. We are normally not aware that, in the periods of fixation, microscopic eye movements continually shift the stimulus on the retina. Visual percepts tend to fade when the stimulus is artificially immobilized on the retina, and it has long been hypothesized that the incessant fixational motion of the eye plays a fundamental role in visual perception. Several findings from our recent NIH-funded research suggest that this motion is, in fact, a critical computational element of an active sensorimotor strategy by which the visual system processes spatial information in the temporal domain. Building upon our recent results, this project examines the perceptual, computational, and neural consequences of using eye movements to represent space through time. It addresses three fundamental questions:
(Aim 1) How is spatial information encoded in the modulations of luminance resulting from fixational eye movements? (Aim 2) How is this information extracted and interpreted? (Aim 3) Can the spatiotemporal redistribution of input energy be adjusted according to task by controlling fixational eye movements? To link the perceptual influences of fixational eye movements to their effect on the neural coding of visual information and elucidate encoding/decoding mechanisms, this project integrates visual psychophysics in humans, statistical and computational analysis of retinal input, and neural modeling. Experiments will make critical use of a sophisticated system for gaze-contingent display (already developed and extensively tested), which allows precise, yet highly flexible control of retinal stimulation. Statistical, computational, and modeling studies wil reconstruct and examine the visual input signals experienced by retinal receptors and simulate neuronal responses in the retina and lateral geniculate nucleus. The proposal that the visual system uses behavior to represent space through time challenges current views on the mechanisms of early visual processing at the most fundamental level: it replaces the traditional notion of the retina as a passive encoding stage that optimizes overall information transmission with that of an active, tunable system for feature extraction, whose function can only be understood in conjunction with eye movements. This shift of view implies that eye movements are in part responsible for fundamental properties of spatial vision (e.g., contrast sensitivity an its dynamics) that, at present, are solely attributed to neural mechanisms. Understanding the functional implications of fixational instability may also lead to new treatment approaches for visual impairments in the many disordrs whose manifestations include abnormal fixational eye movements.

Public Health Relevance

During natural viewing, humans continually perform microscopic eye movements. These movements are abnormal in various pathological conditions with reduced visual capabilities. By investigating the visual functions of microscopic eye movements, this project will advance the understanding of normal human vision as an integrated sensorimotor process and may open the way to new treatment approaches for the visual impairments commonly associated with such conditions.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Program Officer
Wiggs, Cheri
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
Schools of Arts and Sciences
United States
Zip Code
Fang, Yu; Gill, Christopher; Poletti, Martina et al. (2018) Monocular microsaccades: Do they really occur? J Vis 18:18
Rucci, Michele; Victor, Jonathan D (2018) Perspective: Can eye movements contribute to emmetropization? J Vis 18:10
Rucci, Michele; Ahissar, Ehud; Burr, David (2018) Temporal Coding of Visual Space. Trends Cogn Sci 22:883-895
Poletti, Martina; Rucci, Michele; Carrasco, Marisa (2017) Selective attention within the foveola. Nat Neurosci 20:1413-1417
Boi, Marco; Poletti, Martina; Victor, Jonathan D et al. (2017) Consequences of the Oculomotor Cycle for the Dynamics of Perception. Curr Biol 27:1268-1277
Bowers, Norick R; Poletti, Martina (2017) Microsaccades during reading. PLoS One 12:e0185180
Ko, Hee-Kyoung; Snodderly, D Max; Poletti, Martina (2016) Eye movements between saccades: Measuring ocular drift and tremor. Vision Res 122:93-104
Mostofi, Naghmeh; Boi, Marco; Rucci, Michele (2016) Are the visual transients from microsaccades helpful? Measuring the influences of small saccades on contrast sensitivity. Vision Res 118:60-9
Poletti, Martina; Rucci, Michele (2016) A compact field guide to the study of microsaccades: Challenges and functions. Vision Res 118:83-97
Segal, Irina Yonit; Giladi, Chen; Gedalin, Michael et al. (2015) Decorrelation of retinal response to natural scenes by fixational eye movements. Proc Natl Acad Sci U S A 112:3110-5

Showing the most recent 10 out of 25 publications