Human visual event-related potentials (ERPs) and the electroencephalogram (EEG) measure a variety of different cognitive operations during visual processing. Visual ERPs and EEG are vital tools in diagnosing and studying neurological and psychopathological disorders, in addition to revealing how the health brain turns visual inputs into appropriate responses. However, it is not possible to definitively determine what brain areas generate specific ERP components and EEG oscillations related to deploying visual attention, visual working memory storage, and monitoring task performance. The renewal of this project will support our work localizing the sources of ERP components and oscillatory signatures elicited during the performance of visual tasks using both humans and nonhuman primates. In the latter we will record noninvasive ERPs and EEG simultaneously with intracranial recordings of local field potentials. These recordings will be used to perform forward modeling of the neural generators from inside the head. Preliminary evidence from monkeys and humans performing identical visual tasks demonstrates homology between human and macaque ERP components and the modulation of specific frequency bands in the EEG providing indices of the deployment of visual attention, the storage of visual information in visual working memory, and performance monitoring. By concurrently studying humans and monkeys this project will allow clinicians and health researchers to use the visually and response evoked EEG activity and ERP components recorded noninvasively from humans to access whether specific brain regions are functioning properly and also to develop animal models of specific disorders.
This project will measure visual event-related potentials (ERPs) and modulations of the electroencephalogram (EEG) in humans and nonhuman primates to establish whether homologous electrophysiological indices of visual information processing exist across primate species. The neural generators of the homologous activity will then be localized in the brains of the monkeys to test models derived from human data and establish the neural substrates of noninvasively recorded visual ERPs and EEG.
Cosman, Joshua D; Lowe, Kaleb A; Zinke, Wolf et al. (2018) Prefrontal Control of Visual Distraction. Curr Biol 28:414-420.e3 |
Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F et al. (2018) Neural bases of automaticity. J Exp Psychol Learn Mem Cogn 44:440-464 |
Cosman, Joshua D; Lowe, Kaleb A; Zinke, Wolf et al. (2018) Prefrontal Control of Visual Distraction. Curr Biol 28:1330 |
Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F et al. (2017) Recognition-induced forgetting of faces in visual long-term memory. Atten Percept Psychophys 79:1878-1885 |
Fukuda, Keisuke; Woodman, Geoffrey F (2017) Visual working memory buffers information retrieved from visual long-term memory. Proc Natl Acad Sci U S A 114:5306-5311 |
Reinhart, Robert M G; Cosman, Josh D; Fukuda, Keisuke et al. (2017) Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys 79:3-23 |
Cosman, Joshua D; Arita, Jason T; Ianni, Julianna D et al. (2016) Electrophysiological measurement of information flow during visual search. Psychophysiology 53:535-43 |
Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F (2016) Attention's Accelerator. Psychol Sci 27:790-8 |
Fukuda, Keisuke; Kang, Min-Suk; Woodman, Geoffrey F (2016) Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. J Neurophysiol 116:1715-1727 |
Reinhart, Robert M G; Xiao, Wenxi; McClenahan, Laura J et al. (2016) Electrical Stimulation of Visual Cortex Can Immediately Improve Spatial Vision. Curr Biol 26:1867-72 |
Showing the most recent 10 out of 56 publications