Research on perceptual learning (PL) has been dominated by studies that seek to isolate and improve individual visual processes. However, an important translational outcome of PL research is to address the needs of patients with vision loss, who seek to improve performance on daily tasks such as reading, navigation, and face recognition. These more ecological cases of behavioral change and cortical plasticity, which are inherently complex and integrative, have revealed significant gaps in a more holistic understanding of how multiple visual processes and their associated brain systems jointly contribute to durable and generalizable PL. To address these gaps, here we study simulated and natural central vision loss. We focus on macular degeneration (MD), one of the most common causes of vision loss (projected to affect 248 million people worldwide by 2040), which results from damage to photoreceptors in the macula that disrupts central vision. Such central vision loss is a superb lens through which study to how ecologically relevant changes in the use of vision relate to changing brain activity and connectivity because it represents a massive alteration in visual experience requiring reliance on peripheral vision for daily tasks. With the use of eye-trackers and gaze-contingent displays that induce central scotomas, central vision loss can be simulated in normally seeing individuals, who then develop peripheral looking patterns that resemble compensatory vision strategies seen in MD patients. Ideal use of peripheral vision requires improvement in multiple vision domains, three of the most important being: early visual processing (e.g., visual sensitivity), mid-level visual processing (e.g., spatial integration), and attention and eye-movements. To date, no study has systematically investigated these three domains of PL and their neural underpinnings. The proposed research plan rests on rigorous prior work showing that PL influences multiple brain structures and functions related to these three domains. We propose a novel approach of systematically measuring how different training regimes related to the three domains influence a broad range of psychophysical and ecological behaviors (Aim 1), how these changes arise from plasticity in brain structure and function (Aim 2), and how PL after simulated central vision loss compares to PL in MD (Aim 3). This work is significant and innovative as it will be the first integrated study of PL characterizing multiple trainable factors and their impact on diverse behavioral outcomes and on cutting-edge assessments of neural representations and dynamics. It is also the first study to directly compare PL in MD patients with PL in a controlled model system of central visual field loss with simulated scotomas, which if validated will allow the use of this model system to interrogate MD in larger samples of healthy individuals. We will also share a unique dataset that will help the field to understand behavioral and neural plasticity after central vision loss and individual differences in responsiveness to training. Finally, this work will illuminate basic mechanisms of brain plasticity after sensory loss that may generalize to other forms of rehabilitation after peripheral or central damage.

Public Health Relevance

The proposed research is relevant to public health because a greater understanding of plasticity after central vision loss can inform new therapies for treating low vision and has potential to benefit millions of individuals suffering from low vision. The treatment of low vision is particularly relevant to the mission of the NEI to support research on visual disorders, mechanisms of visual function and preservation of sight. The comparison of dif- ferent training and outcome factors is in line with the NIMH RDOC framework and studies in an aging popula- tion are consistent with the mission of the NIA.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY031589-01A1
Application #
10142951
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wiggs, Cheri
Project Start
2021-03-01
Project End
2025-02-28
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Pediatrics
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294