The focus of our research is to determine how signal transduction regulates directed motility and behavior in the bacterium Myxococcus xanthus using an integrated approach that combines biochemistry, genetics, and cell biology. M. xanthus is an excellent model system to address fundamental questions concerning cell-cell signaling and directed movement as cells form multicellular biofilms and fruiting bodies as part of a complex life cycle. M. xanthus fruiting bodies are similar in many ways to biofilms formed by Pseudomonas aeruginosa and are of public health interest since biofilms render bacteria resistant to antibiotics and are very difficult to treat in patients. Biofilm and fruiting body formation require the activity of chemosensory systems to direct cell movements. Previously, we have shown that the Frz chemosensory pathway regulates both vegetative swarming and developmental aggregation by controlling the reversal frequency of cells. Cell reversals in Myxococcus, like tumbling in flagellated bacteria, allows cells to reorient themselves and to bias directional motility based on the temporal sensing of stimuli. In this proposal we plan to study the localization of the Frz pathway proteins and how localization may impact cell reversals. We also plan to study feedback regulation in the pathway and the link between the Frz chemosensory system and the two gliding motility engines. The following specific aims are proposed: (i) Localization and analysis of Frz receptors - FrzCD is a cytoplasmic protein localized in clusters (arrays) that continuously rearrange and move around the cells. We plan to identify FrzCD associated proteins and how they might affect cluster function and possible roles for cytoskeletal proteins in cluster localization and mobility. (ii) Feedback regulation in the Frz pathway - We plan to study the regulation of site-specific FrzCD methylation, especially during development. We will identify methylation sites by mass spectrometry and the role of the methyltransferase (FrzF) in controlling methylation. We also plan to study FrzE, a CheA (histidine kinase)-response regulator fusion protein another potential site for feedback regulation. (iii) Coupling the Frz system to motility engines - We plan to study the roles of AglZ, FrzS, and MglA as possible links between the Frz system and the A- and S-motility systems and to screen for mutants that may be defective in this link.

Public Health Relevance

The focus of our research is to understand how signal transduction regulates motility and multicellular interactions in the bacterium Myxococcus xanthus. Myxococcus forms fruiting bodies that are similar in many ways to biofilms formed by Pseudomonas aeruginosa and other pathogens;these are of public health interest since biofilms render bacteria resistant to antibiotics and are very difficult to treat in patients. Biofilm formation usually requires motility, chemotaxis, type IV pili and extracellular polysaccharide matrix materials;these are more easily studied in Myxococcus, a non-pathogenic bacterium, but the results are directly relevant to the understanding and control of pathogenic bacteria with similar properties.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM020509-37S1
Application #
8111365
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Anderson, James J
Project Start
2010-08-06
Project End
2012-01-31
Budget Start
2010-08-06
Budget End
2012-01-31
Support Year
37
Fiscal Year
2010
Total Cost
$42,558
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Fu, Guo; Bandaria, Jigar N; Le Gall, Anne Valérie et al. (2018) MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 115:2484-2489
Berleman, James E; Zemla, Marcin; Remis, Jonathan P et al. (2016) Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior. ISME J 10:2620-2632
Nan, Beiyan; Zusman, David R (2016) Novel mechanisms power bacterial gliding motility. Mol Microbiol 101:186-93
Kaimer, Christine; Zusman, David R (2016) Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ. Mol Microbiol 100:379-95
Nan, Beiyan; Bandaria, Jigar N; Guo, Kathy Y et al. (2015) The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA. Proc Natl Acad Sci U S A 112:E186-93
Nan, Beiyan; McBride, Mark J; Chen, Jing et al. (2014) Bacteria that glide with helical tracks. Curr Biol 24:R169-73
Moine, Audrey; Agrebi, Rym; Espinosa, Leon et al. (2014) Functional organization of a multimodular bacterial chemosensory apparatus. PLoS Genet 10:e1004164
Kaimer, Christine; Zusman, David R (2013) Phosphorylation-dependent localization of the response regulator FrzZ signals cell reversals in Myxococcus xanthus. Mol Microbiol 88:740-53
Nan, Beiyan; Bandaria, Jigar N; Moghtaderi, Amirpasha et al. (2013) Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proc Natl Acad Sci U S A 110:E1508-13
Kaimer, Christine; Berleman, James E; Zusman, David R (2012) Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr Opin Microbiol 15:751-7

Showing the most recent 10 out of 24 publications