This project is an enzymological study aimed at determining the chemical mechanism whereby oxygen is activated by enzymes called oxygenases. Oxygenases are found in all aerobic organisms and are important in the biosynthesis, transformation, and degradation of steroids, nucleic acids, catecholamines, collagen, drugs, prostaglandins, lignin, and various foreign compounds. These enzymes are crucial to a majority of life forms.
Our aims are to continue the investigation of three different types of oxygenases which we have isolated in homogeneous form: 1) Catechol dioxygenases, including catechol and protocatechuate dioxygenases, which are nonheme iron-containing enzymes important in the degradation of aromatic compounds by soil bacteria. 2) Flavoprotein hydroxylases which include bacterial and yeast enzymes such as para-hydroxybenzoate hydroxylase. 3) Phthalate oxygenase, a multicomponent dioxygenase system which converts an unactivated aromatic compound to a dihydrodiol. This type of oxygenase is very important in environmental control of aromatic compounds, and is poorly understood at present. The proposed study will employ rapid kinetics spectrophotometry, chemical quenching, and other enzymological methods. X-ray crystallography and genetic techniques, including cloning, gene sequencing and mutagenesis, will be used extensively to develop a better understanding of these interesting enzymes. We hope that results from these studies will lead to a better understanding of how molecular oxygen is activated for controlled metabolic processes. This in turn may lead to the ability to predict how various compounds will be metabolized in the environment.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM020877-15
Application #
3270183
Study Section
Physical Biochemistry Study Section (PB)
Project Start
1978-09-01
Project End
1991-08-31
Budget Start
1989-09-01
Budget End
1990-08-31
Support Year
15
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Spolitak, Tatyana; Ballou, David P (2015) Evidence for catalytic intermediates involved in generating the chromopyrrolic acid scaffold of rebeccamycin by RebO and RebD. Arch Biochem Biophys 573:111-9
Singh, Sangita; Ballou, David P; Banerjee, Ruma (2011) Pre-steady-state kinetic analysis of enzyme-monitored turnover during cystathionine ?-synthase-catalyzed H(2)S generation. Biochemistry 50:419-25
Galinato, Mary Grace I; Spolitak, Tatyana; Ballou, David P et al. (2011) Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. Biochemistry 50:1053-69
Mayfield, Jeffery A; Frederick, Rosanne E; Streit, Bennett R et al. (2010) Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase. J Biol Chem 285:30375-88
Spolitak, Tatyana; Funhoff, Enrico G; Ballou, David P (2010) Spectroscopic studies of the oxidation of ferric CYP153A6 by peracids: Insights into P450 higher oxidation states. Arch Biochem Biophys 493:184-91
Tarasev, Michael; Pullela, Sailaja; Ballou, David P (2009) Distal end of 105-125 loop--a putative reductase binding domain of phthalate dioxygenase. Arch Biochem Biophys 487:10-8
Lee, Moon N; Takawira, Desire; Nikolova, Andriana P et al. (2009) Functional role for the conformationally mobile phenylalanine 223 in the reaction of methylenetetrahydrofolate reductase from Escherichia coli. Biochemistry 48:7673-85
Shebley, Mohamad; Kent, Ute M; Ballou, David P et al. (2009) Mechanistic analysis of the inactivation of cytochrome P450 2B6 by phencyclidine: effects on substrate binding, electron transfer, and uncoupling. Drug Metab Dispos 37:745-52
Jaganaman, Sunil; Pinto, Alex; Tarasev, Michael et al. (2007) High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expr Purif 52:273-9
Tarasev, Michael; Pinto, Alex; Kim, Duke et al. (2006) The ""bridging"" aspartate 178 in phthalate dioxygenase facilitates interactions between the Rieske center and the iron(II)--mononuclear center. Biochemistry 45:10208-16