Many simple organic molecules containing phenyl substituents or benzene rings become cytotoxic upon biotransformation to reactive electrophilic metabolites. Prime examples include halothane, acetaminophen and bromobenzene (BB). Their hepatotoxicity is correlated with covalent binding of reactive metabolites to cellular proteins. As a start toward elucidating the biochemical mechanism(s) of their cytotoxicity we identified the structures of ten adducts of BB metabolites to protein-SH groups; most arose via quinone metabolites, but we also found that BB-3,4-oxide (BBO), thought to be the primary """"""""toxic"""""""" metabolite of BB, alkylates histidine and lysine as well as cysteine residues of rat liver proteins. Key questions concerning the mechanism of cell injury by reactive metabolites include the identity of the proteins they target and the functional consequences of their covalent modification. We recently identified several rat liver proteins targeted by BB metabolites. One was a nonspecific esterase also known to be a target for metabolites of halothane and molinate. Another, surprisingly, was epoxide hydrolase, which is supposed to detoxify BBO. To address the mechanism of BB-induced cytotoxicity it is essential to expand this list by identifying other liver proteins targeted by BB metabolites. In doing so we will emphasize mitochondrial proteins but will continue to explore cytosolic and microsomal proteins. To facilitate recognition of BBO adducts, we raised antibodies to p-bromophenyl-cysteine and demonstrated their utility for western blotting; we will now develop antibodies to p-bromophenyl-histidine and p-bromophenyl-lysine as well. These antibodies, coupled with [C14]-BB, will give us a broad and powerful means for finding and identifying those proteins of greatest toxicological interest. Very little is known about the chemistry and consequences of protein adduction by reactive metabolites. Thus we will elucidate in detail the specific site(s), metabolite(s) and linkage(s) involved in adduct formation for select BB target proteins. For those target proteins which are enzymes, we will evaluate the effect of adduction on catalytic activity to assess its potential contribution to cell injury. Comparing the proteins modified by bromobenzene to those modified by other small bioactivated toxins may reveal the existence, or the lack of, a """"""""common pathway"""""""" for chemically-induced cytotoxic responses.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM021784-25
Application #
6385291
Study Section
Special Emphasis Panel (ZRG1-ALTX-1 (01))
Program Officer
Okita, Richard T
Project Start
1978-08-01
Project End
2003-03-31
Budget Start
2001-04-01
Budget End
2002-03-31
Support Year
25
Fiscal Year
2001
Total Cost
$216,011
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
072933393
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Sukthankar, Pinakin; Avila, L Adriana; Whitaker, Susan K et al. (2014) Branched amphiphilic peptide capsules: cellular uptake and retention of encapsulated solutes. Biochim Biophys Acta 1838:2296-305
Koen, Yakov M; Sarma, Diganta; Hajovsky, Heather et al. (2013) Protein targets of thioacetamide metabolites in rat hepatocytes. Chem Res Toxicol 26:564-74
Hanzlik, Robert P; Koen, Yakov M; Fang, Jianwen (2013) Bioinformatic analysis of 302 reactive metabolite target proteins. Which ones are important for cell death? Toxicol Sci 135:390-401
Koen, Yakov M; Sarma, Diganta; Williams, Todd D et al. (2012) Identification of protein targets of reactive metabolites of tienilic acid in human hepatocytes. Chem Res Toxicol 25:1145-54
Koen, Yakov M; Hajovsky, Heather; Liu, Ke et al. (2012) Liver protein targets of hepatotoxic 4-bromophenol metabolites. Chem Res Toxicol 25:1777-86
Sarma, Diganta; Hajovsky, Heather; Koen, Yakov M et al. (2012) Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chem Res Toxicol 25:1868-77
Hajovsky, Heather; Hu, Gang; Koen, Yakov et al. (2012) Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem Res Toxicol 25:1955-63
Sarma, Diganta; Hanzlik, Robert P (2011) Synthesis of carbon-14, carbon-13 and deuterium labeled forms of thioacetamide and thioacetamide S-oxide. J Labelled Comp Radiopharm 54:795-798
Hanzlik, Robert P; Fang, Jianwen; Koen, Yakov M (2009) Filling and mining the reactive metabolite target protein database. Chem Biol Interact 179:38-44
Fang, Jianwen; Koen, Yakov M; Hanzlik, Robert P (2009) Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners. BMC Chem Biol 9:5

Showing the most recent 10 out of 35 publications