In this application Dr Herman proposes to study genetic mechanisms important in development, broadly defined. The experiments fall into three only loosely related groups. The first and largest group of experiments concern mec-8. mec-8 single mutants have three phenotypes: impenetrant cold-sensitive embryonic lethality, failure to respond to light touch (this is how the gene was initially identified), and failure of certain certain sensory neurons to take up dye, a phenotype usually associated with structural defects in the sensory endings. Lundquist and Herman showed in addition that mec-8 has a synthetic lethal interaction with certain weak mutations in the perlecan gene, unc-52. They cloned mec-8 and found that it encodes an RNA- recognition motif (RRM)-containing protein. Rogalski and Moerman have shown that unc-52 is alternatively spliced, and have evidence that the distribution of spliced products is changed in a mec-8 mutant. There is less complete evidence from the Moerman and Chalfie laboratories that MEC-8 is also necessary for alternative splicing of the mec-8 and mec-2 gene products. Dr Herman proposes that MEC-8 is necessary for the production of certain specific spliced products of certain target genes. In the absence of MEC-8, particular transcripts are not made, leading to the mutant phenotypes. Different phenes (Let, Dyf, and Mec) result from the absence of products of different target genes. For instance, MEC-8 may be necessary for the production of unc-52 mRNAs that lack exon 18. The cold-sensitive lethality might result from failure to make certain exon 18-lacking products that are important in embryogenesis. The lethality of mec-8; unc-52(weak) double mutants is explained by the observation that these weak mutations cause chain termination in exon 18: without the ability to skip exon 18, all unc-52 mRNAs are non-functional. To test this hypothesis, Dr Herman proposes to use PCR and anti-UNC-52 antibodies to find out what products are produced from unc-52 in wild- type and mec-8 mutant backgrounds. In addition, they will engineer an unc-52 gene that should bypass the synthetic lethality if the hypothesis is correct, and they will build reporter constructs that should express functional reporter protein only if MEC-8-dependent splicing occurs. Mutagenesis of the reporter constructs will define cis sites of MEC-8 action. A similar analysis will be done for mec-8, and existing mec-8 mutations will be defined by sequencing. Finally, immunocytochemistry and mosaic analysis will be used to define the focus of mec-8 action-- the hypothesis predicts that it will have distinct autonomous foci for each phene. Further experiments will attempt to identify mec-8 targets for specific phenes by isolating mutations in the target genes that cause MEC-8- independent expression of the normally MEC-8-dependent product--these will apear as dominant suppressors of specific MEC-8 phenes. In addition, they will screen for other genes involved in control of alternative splicing by looking for suppressors or enhancers of mec-8. Two genes, smu-1 and smu-2, have already been defined by suppressor mutations. These will be cloned. lin-44 was identified by Michael Herman and H Robert Horvitz on the basis of mutations that reversed the polarity of certain cell divisions in the tail. As a postdoc in Robert Herman's lab, Mike Herman cloned lin-44 and showed that it encodes a Wnt homolog. lin-44 will be studied with two goals, first to find out how it determines the polarity of asymetric divisions, and second to identify new genes important in Wnt signaling.
The final aim of this proposal is more exploratory. Dr Herman proposes to study for a collection of essential genes the effects of loss of gene function in a subset of the animal, i.e., in a genetic mosaic. He contends that lethal arrest phenotypes of essential genes are often uninformative, and that mosaic analysis will provide a clearer picture of essential gene function.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Genetics Study Section (GEN)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Arts and Sciences
United States
Zip Code
Yochem, John; La┼żeti?, Vladimir; Bell, Leslie et al. (2015) C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 398:255-66
Bell, Leslie R; Stone, Steven; Yochem, John et al. (2006) The molecular identities of the Caenorhabditis elegans intraflagellar transport genes dyf-6, daf-10 and osm-1. Genetics 173:1275-86
Yochem, John; Hall, David H; Bell, Leslie R et al. (2005) Isopentenyl-diphosphate isomerase is essential for viability of Caenorhabditis elegans. Mol Genet Genomics 273:158-66
Spartz, Angela K; Herman, Robert K; Shaw, Jocelyn E (2004) SMU-2 and SMU-1, Caenorhabditis elegans homologs of mammalian spliceosome-associated proteins RED and fSAP57, work together to affect splice site choice. Mol Cell Biol 24:6811-23
Yochem, John; Bell, Leslie R; Herman, Robert K (2004) The identities of sym-2, sym-3 and sym-4, three genes that are synthetically lethal with mec-8 in Caenorhabditis elegans. Genetics 168:1293-306
Spike, Caroline A; Davies, Andrew G; Shaw, Jocelyn E et al. (2002) MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 129:4999-5008
Spike, C A; Shaw, J E; Herman, R K (2001) Analysis of smu-1, a gene that regulates the alternative splicing of unc-52 pre-mRNA in Caenorhabditis elegans. Mol Cell Biol 21:4985-95
Davies, A G; Spike, C A; Shaw, J E et al. (1999) Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans. Genetics 153:117-34
Herman, M A; Ch'ng, Q; Hettenbach, S M et al. (1999) EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development 126:1055-64
Lundquist, E A; Herman, R K; Shaw, J E et al. (1998) UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron 21:385-92

Showing the most recent 10 out of 28 publications