Suzuki, Aussie; Long, Sarah K; Salmon, Edward D (2018) An optimized method for 3D fluorescence co-localization applied to human kinetochore protein architecture. Elife 7:
|
Suzuki, Aussie; Gupta, Amitabha; Long, Sarah K et al. (2018) A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Curr Biol 28:2697-2704.e3
|
Salmon, Edward D; Bloom, Kerry (2017) Tension sensors reveal how the kinetochore shares its load. Bioessays 39:
|
Lera, Robert F; Potts, Gregory K; Suzuki, Aussie et al. (2016) Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 12:411-8
|
Suzuki, Aussie; Badger, Benjamin L; Haase, Julian et al. (2016) How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nat Cell Biol 18:382-92
|
Suzuki, Aussie; Badger, Benjamin L; Salmon, Edward D (2015) A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 6:8161
|
Suzuki, Aussie; Badger, Benjamin L; Wan, Xiaohu et al. (2014) The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch. Dev Cell 30:717-30
|
Varma, Dileep; Chandrasekaran, Srikripa; Sundin, Lynsie J R et al. (2012) Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nat Cell Biol 14:593-603
|
Wan, Xiaohu; Cimini, Daniela; Cameron, Lisa A et al. (2012) The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells. Mol Biol Cell 23:1035-46
|
Lawrimore, Josh; Bloom, Kerry S; Salmon, E D (2011) Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J Cell Biol 195:573-82
|
Showing the most recent 10 out of 128 publications