Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM025177-17
Application #
2174396
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Project Start
1978-04-01
Project End
1999-03-31
Budget Start
1996-04-01
Budget End
1997-03-31
Support Year
17
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Biochemistry
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Panda, Markandeswar; Horowitz, Paul M (2004) Activation parameters for the spontaneous and pressure-induced phases of the dissociation of single-ring GroEL (SR1) chaperonin. Protein J 23:85-94
Panda, Markandeswar; Horowitz, Paul M (2002) Conformational heterogeneity is revealed in the dissociation of the oligomeric chaperonin GroEL by high hydrostatic pressure. Biochemistry 41:1869-76
Ramachandiran, Vasanthi; Kramer, Gisela; Horowitz, Paul M et al. (2002) Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. FEBS Lett 512:209-12
Panda, Markandeswar; Ybarra, Jesse; Horowitz, Paul M (2002) Dissociation of the single-ring chaperonin GroEL by high hydrostatic pressure. Biochemistry 41:12843-9
Kramer, Gisela; Ramachandiran, Vasanthi; Horowitz, Paul M et al. (2002) The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Arch Biochem Biophys 403:63-70
Panda, M; Ybarra, J; Horowitz, P M (2001) High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES. J Biol Chem 276:6253-9
Kramer, G; Ramachandiran, V; Horowitz, P et al. (2001) An additional serine residue at the C terminus of rhodanese destabilizes the enzyme. Arch Biochem Biophys 385:332-7
Panda, M; Smoot, A L; Horowitz, P M (2001) The 4,4'-dipyridyl disulfide-induced formation of GroEL monomers is cooperative and leads to increased hydrophobic exposure. Biochemistry 40:10402-10
Smoot, A L; Panda, M; Brazil, B T et al. (2001) The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL. Biochemistry 40:4484-92
Nandi, D L; Horowitz, P M; Westley, J (2000) Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol 32:465-73

Showing the most recent 10 out of 121 publications