Highly integrative cellular processes-those involving many components with interactions distributed widely over time and space-are some of the most challenging and important in the basic biology of human disease. In this proposal, we discuss biochemical, biophysical and mathematical approaches to the physiology and molecular circuits underlying size control in somatic cells, and the pathways responsible for cell shape and polarity. Both types of processes are of importance in embryonic development, cancer, inflammation, and senescence, where morphogenesis, cell motility, growth and size control play prominent roles. Each of our approaches is based on a major technical innovation or conceptual development during the previous grant period. For cell size control, we have helped to develop three new methods for measuring growth at the individual cell level. We propose to use these methods for understanding size control and specifically, size homeostasis. One is a widely applicable computational method for extracting dynamic measurements of great accuracy from static observations of fixed cells. With it, we hope to learn how cells compensate by some feedback process for the naturally tendency of a population to increase its size variation. The other two methods make use of new technologies that can accurately weigh a human cell as it grows. For actin assembly, we have identified the conditions for activating the WAVE complex; we now plan to set up an in vitro system on supported lipid bilayers to assemble actin arrays, characteristic of lamellipodia, using this purified system or concentrated extracts and to test these mechanisms in embryonic frog cells. We have recently described a system for generating filopodia-like structures on such bilayers with cell extracts and defined lipids; we plan to understand the steps in assembling the filopodial tip complex. From such studies, we hope to learn how the biophysical properties of the known signaling and structural components of the membrane and actin system give rise to the characteristic structures in the cell. With increased understanding of size control and morphogenesis, we will be able to understand better the molecular circuits for growth, division, and metastasis, which are so important in cancer and increasingly important in cancer chemotherapy.

Public Health Relevance

Most human diseases, such as cancer, inflammatory, and neurodegenerative diseases, are caused by disruptions of complex cellular or intercellular pathways that affect cell size and morphology. In this proposal, we offer new ways to measure the physiology of cell growth and to reconstitute pathways dictating cell shape and organization; our goal is to identify the molecular circuits underlying these processes and provide new bases for treatment. .

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM026875-38
Application #
8786561
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Nie, Zhongzhen
Project Start
1978-12-01
Project End
2015-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
38
Fiscal Year
2015
Total Cost
$851,919
Indirect Cost
$346,550
Name
Harvard Medical School
Department
Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Ginzberg, Miriam Bracha; Chang, Nancy; D'Souza, Heather et al. (2018) Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. Elife 7:
Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish et al. (2018) Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. Elife 7:
Lee, Ho-Joon; Jedrychowski, Mark P; Vinayagam, Arunachalam et al. (2017) Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation. Cell Rep 20:721-736
Lu, Ying; Wu, Jiayi; Dong, Yuanchen et al. (2017) Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Mol Cell 67:322-333.e6
Chen, Shuobing; Wu, Jiayi; Lu, Ying et al. (2016) Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci U S A 113:12991-12996
Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R et al. (2016) Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165:1440-1453
Lee, Byung-Hoon; Lu, Ying; Prado, Miguel A et al. (2016) USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532:398-401
Ginzberg, Miriam B; Kafri, Ran; Kirschner, Marc (2015) Cell biology. On being the right (cell) size. Science 348:1245075
Klein, Allon M; Mazutis, Linas; Akartuna, Ilke et al. (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187-1201
Wang, Weiping; Wu, Tao; Kirschner, Marc W (2014) The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife 3:e03083

Showing the most recent 10 out of 76 publications