The aim of the proposed research is to identify and characterize DNA topoisomerase mutants in E. coli and in the yeast, Saccharomyces cerevisiae. In E. coli the search will be for mutants lacking the newly discovered enzyme, DNA topoisomerase III. In yeast, mutants lacking either the type 1 or the type 2 topoisomerase will be sought. In each case the purpose of finding a mutant is to determine the role of that particular topoisomerase in the DNA metabolism of the cell. It could be involved in one or more of the following processes: DNA replication, transcription, recombination or repair. The yeast topoisomerases are very similar to those of mammals so that an understanding of their role in the cell will have applicability to all cells. The long range goals of the project are to gain a better understanding of the replication and functions of DNA. This has possible applicability to genetic diseases and to cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM028220-06
Application #
3275506
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1980-07-01
Project End
1986-06-30
Budget Start
1985-07-01
Budget End
1986-06-30
Support Year
6
Fiscal Year
1985
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Type
Schools of Arts and Sciences
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Hsu, Hao-Chi; Wang, Chia-Lin; Wang, Mingzhu et al. (2013) Structural basis for allosteric stimulation of Sir2 activity by Sir4 binding. Genes Dev 27:64-73
Ren, Jie; Wang, Chia-Lin; Sternglanz, Rolf (2010) Promoter strength influences the S phase requirement for establishment of silencing at the Saccharomyces cerevisiae silent mating type Loci. Genetics 186:551-60
Sampath, Vinaya; Yuan, Peihua; Wang, Isabel X et al. (2009) Mutational analysis of the Sir3 BAH domain reveals multiple points of interaction with nucleosomes. Mol Cell Biol 29:2532-45
Krichevsky, Alexander; Gutgarts, Helen; Kozlovsky, Stanislav V et al. (2007) C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Dev Biol 303:259-69
Vaquero, Alejandro; Scher, Michael B; Lee, Dong Hoon et al. (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256-61
Connelly, Jessica J; Yuan, Peihua; Hsu, Hao-Chi et al. (2006) Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol Cell Biol 26:3256-65
Zappulla, David C; Maharaj, Arindel S R; Connelly, Jessica J et al. (2006) Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs. BMC Mol Biol 7:40
Xiang, Song; Kim, Eun Young; Connelly, Jessica J et al. (2006) The crystal structure of Cdc42 in complex with collybistin II, a gephyrin-interacting guanine nucleotide exchange factor. J Mol Biol 359:35-46
Liu, Bingsheng; Sutton, Ann; Sternglanz, Rolf (2005) A yeast polyamine acetyltransferase. J Biol Chem 280:16659-64
Wang, Xiaorong; Connelly, Jessica J; Wang, Chia-Lin et al. (2004) Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing. Genetics 168:547-51

Showing the most recent 10 out of 35 publications