Monoamine oxidases A and B (MAO A and B) are outer mitochondrial membrane-bound enzymes that function in the degradation of neurotransmitters such as serotonin, dopamine, and norepinephrine and have been pharmacologically important in the treatment of various pathological disorders such as depression, addition, and Parkinson's Disease. Each enzyme contains a covalent 8alpha-S-cysteinylFAD as a functional coenzyme. This project seeks continued support to determine the structure of each enzyme by x-ray crystallography to investigate the detailed mechanisms of H+ abstraction in catalysis. To facilitate these studies, we have developed methods for high level expression of each enzyme in Pichia pastrois. The role of the covalent FAD in MAO B will be investigated by disrupting the site for covalent FAD attachment by mutagenesis, followed by expression and purification of the mutant enzyme and comparison of its kinetic properties with WT enzyme The role of the C-terminal hydrophobic domain in enzyme structure and function for MAO A and B will be investigated in preparing the truncated forms and comparison of the purified mutants with WT enzyme properties. Initial studies are proposed to investigat3e the substrate specificity, inhibitor sensitivity, and structural properties of an expressed amine oxidase from Mycobacterium tuberculosis. Results from these studies should provide insights into the structures and mechanisms of these flavoprotein amine oxidases and lead to the development of new, specific drugs for the treatment of neuro-disorders and possibly tuberculosis infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM029433-19
Application #
6399881
Study Section
Physical Biochemistry Study Section (PB)
Program Officer
Preusch, Peter C
Project Start
1982-07-01
Project End
2006-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
19
Fiscal Year
2002
Total Cost
$371,045
Indirect Cost
Name
Emory University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Edmondson, Dale E (2014) Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr Pharm Des 20:155-60
Martinoli, Christian; Dudek, Hanna M; Orru, Roberto et al. (2013) Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction. ACS Catal 3:3058-3062
Orru, R; Aldeco, M; Edmondson, D E (2013) Do MAO A and MAO B utilize the same mechanism for the C-H bond cleavage step in catalysis? Evidence suggesting differing mechanisms. J Neural Transm (Vienna) 120:847-51
Binda, Claudia; Mattevi, Andrea; Edmondson, Dale E (2011) Structural properties of human monoamine oxidases A and B. Int Rev Neurobiol 100:1-11
Binda, Claudia; Aldeco, Milagros; Geldenhuys, Werner J et al. (2011) Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Anti-Diabetes Drugs. ACS Med Chem Lett 3:39-42
MacMillar, Susanna; Edmondson, Dale E; Matsson, Olle (2011) Nitrogen kinetic isotope effects for the monoamine oxidase B-catalyzed oxidation of benzylamine and (1,1-(2)H2)benzylamine: nitrogen rehybridization and CH bond cleavage are not concerted. J Am Chem Soc 133:12319-21
Nucci, Nathaniel V; Pometun, Maxim S; Wand, A Joshua (2011) Mapping the hydration dynamics of ubiquitin. J Am Chem Soc 133:12326-9
Binda, Claudia; Milczek, Erika M; Bonivento, Daniele et al. (2011) Lights and shadows on monoamine oxidase inhibition in neuroprotective pharmacological therapies. Curr Top Med Chem 11:2788-96
Binda, Claudia; Aldeco, Milagros; Mattevi, Andrea et al. (2011) Interactions of monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human monoamine oxidase B complex. J Med Chem 54:909-12
Wang, Jin; Edmondson, Dale E (2011) ²H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase A: comparisons with the human enzyme. Biochemistry 50:7710-7

Showing the most recent 10 out of 87 publications