This research is directed toward the goal of understanding the structural organization of genomic DNA and associated nuclear proteins through detailed 3-dimensional analysis of structures such as the nucleosome core particle, a small gene complete with promoter sequence, and the more complex, polynucleosomal 30 run fiber. Structural principles derived from these studies have direct application to gene control and expression. The primary objective will be to determine a medium to high resolution crystallographic structure of the nucleosome core particle. One or more crystal forms obtained by crystallization of nucleosomes reconstituted from purified histones and specific sequence DNA will be solved to a resolution of about 3 Angstroms using synchrotron radiation and heavy-atom derivative multiple wavelength anomalous diffraction phasing. One of the specific sequence DNAs under study consists of an entire tRNA gene with the polymerase III promoter site located near the center of the nucleosome (as it is in vivo). The structure and geometry of the promoter region and entire gene will be determined. This research program is designed to eventually provide the atomic resolution information which is of fundamental importance to a detailed understanding of gene expression, transcription, DNA replication, and the structures of DNA and chromatin. In conjunction with and complementary to the crystallographic work, studies will be initiated to obtain dynamical information concerning the functional relationships between structural elements within the 30 nm chromatin fiber. These studies will utilize neutron scattering and a viscous shear alignment system unique to Oak Ridge National Laboratory. A promising model for the organization of the 30 nm fiber will be tested using this system in conjunction with the power of contrast variation inherent to neutron scattering.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM029818-11
Application #
3277490
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Project Start
1982-01-01
Project End
1994-12-31
Budget Start
1992-01-01
Budget End
1992-12-31
Support Year
11
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Tennessee Knoxville
Department
Type
Other Domestic Higher Education
DUNS #
City
Knoxville
State
TN
Country
United States
Zip Code
37996
Hanson, B Leif; Bunick, Gerard J (2007) Annealing macromolecular crystals. Methods Mol Biol 364:31-42
Katz, Amy K; Li, Xinmin; Carrell, H L et al. (2006) Locating active-site hydrogen atoms in D-xylose isomerase: time-of-flight neutron diffraction. Proc Natl Acad Sci U S A 103:8342-7
Hanson, B Leif; Alexander, Chad; Harp, Joel M et al. (2004) Preparation and crystallization of nucleosome core particle. Methods Enzymol 375:44-62
Hanson, B Leif; Langan, Paul; Katz, Amy K et al. (2004) A preliminary time-of-flight neutron diffraction study of Streptomyces rubiginosus D-xylose isomerase. Acta Crystallogr D Biol Crystallogr 60:241-9
Bunick, Christopher G; Nelson, Melanie R; Mangahas, Sheryll et al. (2004) Designing sequence to control protein function in an EF-hand protein. J Am Chem Soc 126:5990-8
Hanson, B Leif; Schall, Constance A; Bunick, Gerard J (2003) New techniques in macromolecular cryocrystallography: macromolecular crystal annealing and cryogenic helium. J Struct Biol 142:77-87
Hanson, B Leif; Harp, Joel M; Bunick, Gerard J (2003) The well-tempered protein crystal: annealing macromolecular crystals. Methods Enzymol 368:217-35
Harp, J M; Hanson, B L; Timm, D E et al. (2000) Asymmetries in the nucleosome core particle at 2.5 A resolution. Acta Crystallogr D Biol Crystallogr 56:1513-34
Timm, D E; Mueller, H A; Bhanumoorthy, P et al. (1999) Crystal structure and mechanism of a carbon-carbon bond hydrolase. Structure 7:1023-33
Harp, J M; Hanson, B L; Timm, D E et al. (1999) Macromolecular crystal annealing: evaluation of techniques and variables. Acta Crystallogr D Biol Crystallogr 55:1329-34

Showing the most recent 10 out of 19 publications