The long term objective of this proposal is the understanding of voltage sensing in membrane proteins at the molecular level. Voltage sensing plays a major role in excitable tissues such as nerve, muscle and heart. We propose to study how voltage changes induce conformational changes in voltage gated sodium and potassium channels and in the voltage sensitive phosphatase Ci-VSP by correlating the gating currents with simultaneous rearrangements followed by fluorescence changes of probes placed in specific sites. Ultimately we would like to reproduce the function of the proteins with the landscape of energy obtained from structural changes. In this period we have three specific aims.
Aim 1 : Correlation of voltage sensor regions with the energy landscape of activation. Using Shaker K channels as a model we will study the trajectory of the gating charges through the hydrophobic plug using a fluorescent replacement of arginine that is quenched by Trp. Site-directed electrochromic fluorometry will be used to test the local field in different states of the sensor during gating. The interactions of the charges with the plug will be studied during activation and deactivation as a function of time and voltage. We will look for possible movements of S2 and S3, try to define the differences between the activated and relaxed states using LRET, and search for conditions that stabilize the relaxed state.
Aim 2 : Correlation of conformations and kinetics with Ci-VSP structures. Recent crystal structures of Ci-VSP in putative resting and activated/relaxed states will be compared and correlated with the function and structural changes detected during transitions to address how many charges move per molecule, the size of the individual shot of charge during gating, the effect of the residues of th hydrophobic plug on kinetics and steady-state, a possible secondary structure change of S4 during gating, and recording of single sensor movements by single molecule fluorescence of purified and reconstituted proteins or expressed in oocytes.
With aims 1 and 2 we expect to obtain general rules of conformational changes but also specific differences between Shaker and Ci-VSP.
Aim 3 : Conformational changes and kinetics of the eukaryotic sodium channels. In this period we aim at two general objectives. First, by using LRET with new fluorescent toxins and site- directed fluorescence we will measure conformational changes of each individual domain of Nav1.4 as a function of voltage with and without the beta1 subunit. Second, we will define the molecular basis of the fast kinetics of Na channels induced by the beta subunit, which is crucial for action potential generation. We will test the hypothesis that the beta 1 subunit induces positive cooperativity. We will measure the distances between the beta 1 subunit and beta subunit with LRET, and determine the number of beta 1's per alpha with LRET and single molecule fluorescence. This research is expected to impact our knowledge of how specific residues affect kinetics and steady-state properties that in many cases can be traced to mutations that cause epilepsy, arrhythmia, myotonias and sudden death.

Public Health Relevance

Voltage dependent processes are crucial in cell biology with particular relevance in the generation and propagation of nerve impulses. This proposal aims at the understanding of the physical bases of sensing voltage in membrane proteins using a combination of state-of-the-art techniques that correlate structure and function of voltage-sensitive proteins such as sodium and potassium channels. These studies have relevance in the operation of the nervous system, muscle and heart contraction in health and also in diseases such as epilepsy, myotonias and arrhythmias.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM030376-35
Application #
8828212
Study Section
Biophysics of Neural Systems Study Section (BPNS)
Program Officer
Nie, Zhongzhen
Project Start
1981-08-01
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
35
Fiscal Year
2015
Total Cost
$527,427
Indirect Cost
$188,975
Name
University of Chicago
Department
Biochemistry
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Carrasquel-Ursulaez, Willy; Alvarez, Osvaldo; Bezanilla, Francisco et al. (2018) Determination of the Stoichiometry between ?- and ?1 Subunits of the BK Channel Using LRET. Biophys J 114:2493-2497
Carvalho-de-Souza, Joao L; Bezanilla, Francisco (2018) Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K+ channels. J Gen Physiol 150:307-321
Infield, Daniel T; Lee, Elizabeth E L; Galpin, Jason D et al. (2018) Replacing voltage sensor arginines with citrulline provides mechanistic insight into charge versus shape. J Gen Physiol 150:1017-1024
Mathur, Chhavi; Johnson, Kory R; Tong, Brian A et al. (2018) Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation. Sci Rep 8:2207
Bezanilla, Francisco (2018) Gating currents. J Gen Physiol 150:911-932
Nanazashvili, Mikheil; Sánchez-Rodríguez, Jorge E; Fosque, Ben et al. (2018) LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. Biophys J 114:88-97
Parameswaran, Ramya; Carvalho-de-Souza, João L; Jiang, Yuanwen et al. (2018) Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat Nanotechnol 13:260-266
Carvalho-de-Souza, João L; Pinto, Bernardo I; Pepperberg, David R et al. (2018) Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophys J 114:283-288
Brugarolas, Pedro; Sánchez-Rodríguez, Jorge E; Tsai, Hsiu-Ming et al. (2018) Development of a PET radioligand for potassium channels to image CNS demyelination. Sci Rep 8:607
Kubota, Tomoya; Dang, Bobo; Carvalho-de-Souza, Joao L et al. (2017) Nav channel binder containing a specific conjugation-site based on a low toxicity ?-scorpion toxin. Sci Rep 7:16329

Showing the most recent 10 out of 155 publications