The long-term objective of the research described in this application is to develop new stereocontrolled methods for the synthesis of a variety of unsaturated heterocyclic systems. The vast majority of pharaceuticals used in medical practice are heterocycles. We believe by developing efficient synthetic entries to heterocyclic ring systems, we will allow promising pharacological leads in the future to be rapidly developed with potential therapeutic implications. Heterocyclization reactions are the focus of the studies we propose for the 04 to 07 project years. Cyclizations of this type are much less well developed than the corresponding preparation of carbocycles by polyene cyclizations. Our attention will continue to focus on heterocyclizations which are terminated by vinylsilanes. Since our introduction of these cyclization terminators in 1980, vinylsilanes have proven useful in a number of laboratories to terminate a wide variety of cyclization reactions. Because of the pivotal role that new initiators plan in expanding the horizons of heterocyclization chemistry, we also aim to develop new azacyclic and oxacyclic cyclization initiators. Tetrahydropridines related to the Parkinson's disease stimulaten, MPTP, will be prepared. The new antibiotic streptazolin will be prepared in enantioselective form, as will the powerful """"""""uteroevacuant"""""""" diterpene zoapatanol. Intermediates and natural product targets will be broadly sdcrened for biological activity at the Biological Sciences Research Center of the Shell Development Co., and at NCI.
Showing the most recent 10 out of 30 publications