The cyanobacteria provide an excellent experimental system for studying the control of gene expression in photoautotrophs. We have been applying the powerful tools of molecular genetics and recombinant DNA technology to the study of the regulation of gene expression in these organisms. We have already cloned genes for several phycobiliproteins, including the genes for phycocyanin and allophycocyanin from Synechococcus 7002. Studies are proposed which would allow the isolation of the genes for all remaining components of the phycobilisomes of this cyanobacterium. Studies to characterize six cloned restriction fragments, which carry coding sequences for phycobiliproteins including phycoerythrin from the chromatically-adapting cyanobacterium Pseudanabaena 7409, are also described. A series of promoter fusions to the lacZ gene of E. coli will be constructed. These constructs will be used to examine phycobiliprotein gene expression in cells subjected to different physiological stresses including nutrient starvation, changes in light intensity, and changes in light wave-length. Through the construction of defined mutations in phycobilisome components, we hope to dissect the controls which co-ordinate the synthesis and assembly of these proteins into functional light-harvesting organelles. These studies should extend significantly our understanding of gene regulation processes in the cyanobacteria.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM031625-06
Application #
3279773
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1983-03-01
Project End
1989-02-28
Budget Start
1988-03-01
Budget End
1989-02-28
Support Year
6
Fiscal Year
1988
Total Cost
Indirect Cost
Name
Pennsylvania State University
Department
Type
Schools of Arts and Sciences
DUNS #
City
University Park
State
PA
Country
United States
Zip Code
16802
Shen, Gaozhong; Schluchter, Wendy M; Bryant, Donald A (2008) Biogenesis of phycobiliproteins: I. cpcS-I and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for beta-phycocyanin and allophycocyanin subunits. J Biol Chem 283:7503-12
Saunee, Nicolle A; Williams, Shervonda R; Bryant, Donald A et al. (2008) Biogenesis of phycobiliproteins: II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to CYS-82 OF beta-phycocyanin and CYS-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002. J Biol Chem 283:7513-22
Woodger, Fiona J; Bryant, Donald A; Price, G Dean (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335-47
Inoue-Sakamoto, Kaori; Gruber, Tanja M; Christensen, Suzanne K et al. (2007) Group 3 sigma factors in the marine cyanobacterium Synechococcus sp. strain PCC 7002 are required for growth at low temperature. J Gen Appl Microbiol 53:89-104
Shen, Gaozhong; Saunee, Nicolle A; Williams, Shervonda R et al. (2006) Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta-subunit of phycocyanin in Synechococcus sp. PCC 7002. J Biol Chem 281:17768-78
Frigaard, Niels-Ulrik; Sakuragi, Yumiko; Bryant, Donald A (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods Mol Biol 274:325-40
Wang, Tao; Shen, Gaozhong; Balasubramanian, Ramakrishnan et al. (2004) The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186:956-67
Yu, Jianping; Shen, Gaozhong; Wang, Tao et al. (2003) Suppressor mutations in the study of photosystem I biogenesis: sll0088 is a previously unidentified gene involved in reaction center accumulation in Synechocystis sp. strain PCC 6803. J Bacteriol 185:3878-87
Gomez-Lojero, Carlos; Perez-Gomez, Bertha; Shen, Gaozhong et al. (2003) Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800-11
Huang, Chenhui; Yuan, Xiaolin; Zhao, Jindong et al. (2003) Kinetic analyses of state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and its mutant strains impaired in electron transport. Biochim Biophys Acta 1607:121-30

Showing the most recent 10 out of 50 publications